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Objectives

This research contributes to the understanding of micro- and macro-failure mechanisms in
quasi-isotropic (fabric) graphite reinforced composites based on PMR-15 and Avimid-R
polyimide resins tested under biaxial, shear dominated stress conditions over a temperature
range of -50°C to 315°C.

Introduction

Comprehensive macro and micro failure analyses of unidirectional and woven
graphite/polyimide composites subjected to biaxial shear dominated loading conditions have
been performed in this research. The composites have been tested using the biaxial
Tosipescu and 10° off-axis tests at room and elevated temperatures. Particular attention has
been given to the evaluation of the shear strength properties of graphite/polyimide fabric
composites (8 harness satin) as a function the biaxial loading conditions and temperature.
Fully non-linear finite element computations of the Iosipescu and 10° off-axis tests have
been performed considering the effects of material non-linearity, geometric non-linearity
and the effect of specimen sliding within the Tosipescu fixtures. This research resulted in
six journal publications and four conference presentations. The abstracts of the journal
papers are presented below and the most important findings/accomplishments are briefly
described. Full copies of the journal papers are attached to this report.

Accomplishments/New Findings

I. Numerical Analysis of Biaxial Unidirectional and Fabric Iosipescu

Specimens
Several issues regarding the application of the shear and biaxial Iosipescu tests for the shear

and biaxial strength characterization of unidirectional and fabric composite materials were

addressed in the following three publications:




1. M. Kumosa and T. Han, Non-Linear Finite Element Analysis of losipescu Specimens,
Composites Science and Technology, Vol. 59 (1999) pp. 561-573.

In this paper the effects of specimen sliding within the biaxial Iosipescu fixture and
geometric non-linearity on the mechanical response of isotropic, composite and adhesively
bonded isotropic and composite Iosipescu specimens subjected to shear under small
displacement conditions have been modeled by non-linear finite element techniques. The
mechanical response of the specimens to external loads has been modeled by assuming
different friction coefficients between the loading blocks of the Iosipescu fixture and the
specimens. It has been shown that the sliding of the specimen within the fixture in
conjunction with geofnetric non-linearity (large specimen deformation) can affect, for some
specimen geometries, the load/displacement diagrams and internal stress distributions in the
gage sections of the Iosipescu specimens. These effects are especially strong in the case of
adhesively bonded Iosipescu specimens with either isotropic or composite adherends.
However, for 0° unidirectional graphite/epoxy composite 1osipescu specimens subjected to
small shear loadings the effects of specimen sliding and geometric non-linearity on the
load/displacement diagram and internal stresses appear to be negligible.

2. G. Odegard, K. Searles and M. Kumosa, A Critical Examination of the losipescu Shear
Test as Applied to (° Unidirectional Composite Materials, Mechanics of Composite
Materials and Structures, Vol. 6 (1999) pp. 229-256.

Several issues regarding the application of the shear and biaxial Tosipescu tests for the shear
strength characterization of unidirectional composite materials are addressed in this article.
First, the non-linear effects of specimen sliding and geometric non-linearity on the
mechanical response of (° standard unidirectional graphite/polyimide Iosipescu specimens
with different loading conditions and loading block 'geometries have been investigated.
Second, an attempt has been made to improve the Iosipescu shear test to eliminate normal
compressive stresses in the specimen gauge section and at the same time prevent axial
splitting. Finally, several Iosipescu shear and biaxial experiments have been performed to
select proper specimen geometry and loading conditions for the shear strength
measurements of unidirectional composites.

The non-linear effects are examined with respect to various coefficients of friction,
displacements, loading angles, and fixtures (biaxial with short and modified biaxial with
long loading blocks) using non-linear finite element techniques. It is shown that the effect




of non-linearity is small on the stresses at the center of the standard Iosipescu specimen,
but significant for the stresses near the notch root up to 2 mm applied displacements. In
some cases, significant differences in the stresses calculated for different coefficients of
friction have been observed. All of these results are somewhat consistent for both fixtures,

but with the stress components o,, 0, and o, significantly lower in the standard Iosipescu

specimens tested in the fixture with the long blocks. Numerical load/displacement diagrams
show that specimen sliding and geometric non-linearity have a negligible effect on reaction
forces in the biaxial fixture, and a significant effect on the reaction forces in the modified
biaxial fixture. Since the various combinations of the loading conditions evaluated in this
study do not eliminate transverse compressive stresses in the gauge section of the standard
Tosipescu specimens, a major improvement to the Iosipescu shear test has been proposed.
Using the optimized specimen geometry subjected to biaxial shear/tension loading
conditions, a state of almost pure shear stress can be generated in (° unidirectional
composite Iosipescu specimens without the possibility of axial splitting along the fibers at
the roots of the notches. However, it is shown in the experimental part of this study that for
the optimized Iosipescu specimen, crushing at the inner loading blocks can significantly
affect the shear intralaminar failure process. Only by reducing the cross-sectional area of
the optimized Iosipescu specimen can the effect of crushing on the failure process be
reduced, without, however, high quality shear stress fields present in the gauge section at
failure.

3. G. Odegard, K. Searles and M. Kumosa, Non-Linear Analysis of Woven Fabric-
Reinforced Graphite/PMR-15 Composites under Shear-Dominated Biaxial Loads,
Mechanics of Composite Materials and Structures (April 1999), submitted for publication.

An elastic-plastic, time-independent, macroscopic, homogenous model of 8-harness satin
woven graphite/PMR-15 composite material has been developed that predicts the non-linear
response of the material subjected to shear-dominated biaxial loads. The model has been
used to determine the response of woven composite off-axis and Iosipescu test specimens
in non-linear finite analyses using multi-linear averaging techniques. The hume_rically
calculated response of the specimen was then compared to experimentally obtained data. It
has been shown that the numerically calculated stress-strain diagrams of the off-axis
specimens are very close to the experimentally obtained curves. It has been shown that the




numerically determined shear stress-strain and load-displacement curves of the woven
Tosipescu specimens are close to the experimentally obtained curves up to the point of
significant interlaminar damage initiation and propagation. The results obtained in this
study clearly demonstrate that the non-linear material behavior of the graphite/polyimide
woven composites subjected to shear-dominated biaxial loading conditions cannot be
ignored and should be considered in any stress analysis. The linear-elastic approach
grossly overestimates the loads and stresses at failures of these materials in the off-axis and
Tosipescu tests. It can be assumed that the same discrepancies will arise in the numerical
analysis of the woven composites tested under other biaxial shear-dominated loading
conditions using other biaxial test methods.

II. Failure Investigation of Graphite/Polyimide fabric Composites at Room
and Elevated Temperatures

Shear and biaxial shear-dominated experiments using the biaxial Iosipescu and 10° off-axis |
tests have been performed in order to determine the biaxial shear dominated strength
properties of 8 harness satin graphite/polyimide composites at room and elevated
temperatures. -

1. K. Searles, J. McCarthy and M. Kumosa, An Image Analysis Technique for Evaluating
Internal Damage in Graphite/Polyimide Fabric Composites, Composites Science and
Technology, Vol. 58 (1998) pp. 1607-1619.

The purpose of this paper is to suggest a possible technique for evaluating internal damage
in fabric-reinforced composite materials. The technique presented in this work is based on
capturing and performing a qualitative analysis of scanning electron microscope images of
damage from planar specimen slices (serial sections) and then reassembling the slices in
three-dimensional space. This method has been applied to evaluating damage in graphite-
fabric/PMR-15 Iosipescu specimens tested in shear. Three-dimensional damage maps have
been presented and the extent of damage through the thickness of a graphite-fabric/PMR-15
Iosipescu specimen has been determined. The same approach could be used for the
evaluation of internal damage in other composite systems.




2. K. Searles, G. Odegard, M. Castelli, and M. Kumosa, Failure Investigation of Graphite
Polyimide Fabric Composites at Room and Elevated Temperatures using the Biaxial
Iosipescu Test, Journal Composite Materials (1999) in press.

The biaxial and modified biaxial Iosipescu shear test methods were applied to determine the

- shear dominated, biaxial mechanical response of graphite/PMR-15 and graphite/Avimid-R

woven fabric composites at room and elevated temperatures. Three different composite
architectures were examined: T650-35 warp-aligned, 8 harness satin fabric in a PMR-15
matrix, T650-35 warp-aligned, 8 HS fabric in an Avimid-R matrix and T650-35 0°90°
8HS fabric in an Avimid-R matrix. Several biaxial Iosipescu tests were performed at room
temperatures under shear, shear-tension, and shear-compression loading conditions to
characterize damage and obtain biaxial, shear dominated failure properties. Shear tests were
also conducted at elevated temperatures approaching 316°C to determine the effects of
temperature on the shear strengths of the composite investigated. Within this investigation,
it was found that graphite/Avimid-R was more resistant to biaxial, shear dominated failure
at room temperature in comparison to graphite/PMR-15. However, the graphite/PMR-15
composite system exhibited better shear strength properties at elevated temperatures above
232°C. It was found that the effect of compression along the notch root axis generated by
the loading blocks did not affect the loads at failure. '

III. Evaluation of the Elastic Properties of 8 Harness Satin Composites

1. K. Searles, G. Odegard and M. Kumosa, Micro- and Mesomechanics of 8-Harness
Satin Woven Fabric Composites: I - Evaluation of Elastic Behavior, Mechanics of
Composite Materials and Structures (August 1999) submitted for publication.

In part I of this two-part paper, simplified two-dimensional micromechanics and
mesomechanics models have been introduced to predict the elastic behavior of 8 harness
satin woven fabric composites. The woven warp and fill tows were independently treated
as unidirectional composites and composite cylinder assemblage (CCA) theory was adopted
to predict tow elastic properties from constituent fiber and matrix properties. Since
evaluation of woven lamina stiffness requires an accurate description of tow geometry, a
method was also developed to describe arbitrary tow geometries by mathematically fitting
cubic splines and/or polynomials to micrographs of composite cross-sections. Finally,
classical lamination theory was introduced to determine the overall elastic behavior of an n-
layer composite laminate, assuming the woven lamina was a modified, two-layer laminate.




The simplified mechanics model was evaluated using results from numerical strain energy
and equivalent force approaches and results from a series of experimental Iosipescu shear
tests and off-axis tensile tests on T650-35 (3k), 8HS woven graphite-PMR-15 composites.
Issues regarding exclusion of a matrix layer in the simplified 2-layer laminate analysis were
addressed in the strain energy analysis of an idealized 3-D representative volume element.
The mechanics model was found adequate in estimating the lower bounds of 8HS woven
fabric composite elastic properties. The model also provided a reasonable estimation of
symmetric cross-ply composite properties.

Personnel Supported in this Project

Three graduate students were supported in this project. Mr. V. Thirumalai was supported
by AFSOR (F49620—95-1-0250) in the Department of Materials Science and Engineering at
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September 30, 1995. Mr. K. Searles was fully supported by AFOSR in the Department of
Materials Science and Engineering at the Oregon Graduate Institute of Science &
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F49620-96-1-0314). Kevin Searles should graduate with Ph. D. in September 1999. Mr.
G. Odegard, a graduate student in the Department of Engineering at DU, has been involved
in this project (F49620-96-1-0314) since February 1997. He has been supported jointly by
the National Science Foundation and the AFOSR grant between September 1, 1997 and
August 1999. Mr. Odegard will graduate in 2000.

Interactions/Transitions

This study was performed in close collaboration with the NASA Lewis (Glenn) Research
Center (Mr. M. Castelli) and Pratt&Whitney (Mr. R. Cairo). The composite materials
investigated in this project were supplied by Pratt&Whitney (Graphite/Avimid-R) and
NASA Lewis (Glenn) Research Center (Graphite/ PMR-15).

““vf




COMPLETE LIST OF PUBLICATIONS

Based on the research performed in this project the following publications have been
prepared:

- Journal Publications

1. K. Searles, J. McCarthy and M. Kumosa, An Image Analysis Technique for Evaluating
Internal Damage in Graphite/Polyimide Fabric Composites, Composites Science and
Technology, Vol. 58 (1998) pp. 1607-16109.

2. M. Kumosa and T. Han, Non-Linear Finite Element Analysis of Iosipescu Specimens,
Composites Science and Technology, Vol. 59 (1999) pp. 561-573.

3. G. Odegard, K. Searles and M. Kumosa, A Critical Examination of the Iosipescu Shear
Test as Applied to (® Unidirectional Composite Materials, Mechanics of Composite
Materials and Structures, Vol. 6 (1999) pp. 229-256.

4. K. Searles, G. Odegard, M. Castelli, and M. Kumosa, Failure Investigation of Graphite
Polyimide Fabric Composites at Room and Elevated Temperatures using the Biaxial
Tosipescu Test, Journal Composite Materials (1999) in press.

5. G. Odegard, K. Searles and M. Kumosa, Non-Linear Analysis of Woven Fabric-
Reinforced Graphite/PMR-15 Composites under Shear-Dominated Biaxial Loads,
Mechanics of Composite Materials and Structures (April 1999), submitted for publication.

6. K. Searles, G. Odegard and M. Kumosa, Micro- and Mesomechanics of 8-Harness

Satin Woven Fabric Composites: I - Evaluation of Elastic Behavior, Mechanics of
Composite Materials and Structures (August 1999) submitted for publication.

- Conference Proceedings/Presentations

1. M. Kumosa, K. Searles and G. Odegard, Biaxial Failure Analysis of Graphite
Reinforced Polyimide Composites, in the Proceedings of the HITEMP Review, Advanced




High Temperature Engine Materials Technology Program, NASA Lewis Research Center,
Cleveland, Ohio, April 29-30, 1997, vol. I, paper 18.

2. M. Kumosa, K. Searles, G. Odegard and M. Castelli, Biaxial In-Plane Testing of High
Temperature Graphite/Polyimide Fabric Composites,in the Proceedings of the HIGH
TEMPLE Workshop XVIII, January 20 - January 22, 1998, Hilton Resort, Hilton Head
Island, South Carolina.

3. K. Searles and M. Kumosa, Analysis of Nonlinear Behavior in 8-Harness Satin Woven
Fabric Composites Subjected to In-Plane Biaxial Shear Deformation, Proc. of the High
Temple Workshop XIX, February 1-4, 1999, Denver, Colorado, pp. X1-X25

4. G. Odegard, M. Kumosa and M. Castelli, Shear Dominated Biaxial Elastic-Plastic
Analysis of Unidirectional Graphite/PMR-15 Composites at Room and Elevated
Temperatures, Proc. of the High Temple Workshop XIX, February 1-4, 1999, Denver,
Colorado, pp. M1-M15.




ELSEVIER

PII: S0266-3538(97)00227-3

Composites Science and Technology 58 (1998) 1607-1619
© 1998 Elsevier Science Ltd. All rights reserved
Printed in Northern Ireland

0266-3538/98 $—see front matter

AN IMAGE ANALYSIS TECHNIQUE FOR EVALUATING
INTERNAL DAMAGE IN GRAPHITE-FABRIC/POLYIMIDE
COMPOSITES

K. Searles,® J. McCarthy? & M. Kumosa®*

2Materials Microanalysis Laboratories, Department of Materials Science and Engineering, Oregon Graduate Institute of Science and
Technology, PO Box 91000, Portland, OR 97291-1000, USA

bCenter for Advanced Materials and Structures, Department of Engineering, University of Denver, 2390 South York, Denver, CO 80208

Us4

(Received 8 April 1997; revised 30 October 1997; accepted 20 November 1997)

Abstract

The purpose of this paper is to suggest a possible techni-
que for evaluating internal damage in fabric-reinforced
composite materials. The technique presented in this work
is based on capturing and performing a qualitative analy-
sis of scanning electron microscope (SEM) images of
damage from planar specimen slices (serial sections) and
then reassembling the slices in three-dimensional space.
This method has been applied to evaluating damage in
graphite-fabric/ PMR-15 losipescu specimens tested in
shear. Three-dimensional damage maps have been pre-
sented and the extent of damage through the thickness of
a graphite-fabric/ PMR-15 losipescu specimen has been
determined. The same approach could be used for the
evaluation of internal damage in other composite systems.
© 1998 Elsevier Science Ltd. All rights reserved

1 INTRODUCTION

The present work is concerned with developing accep-
table imaging techniques for determining the extent of
in-plane and through-thickness damage in losipescu
composite specimens tested under shear dominated,
biaxial loading conditions. Although restricted to
woven-fabric graphite/PMR-15 composites in this
paper, the imaging techniques could also be generalized
to include other composite systems.

‘The Tosipescu test,! originally intended for measuring
the elastic shear properties of isotropic metals, was
subsequently extended by Walrath and Adams?3 to
include composite materials. This method has evolved
into one of the more popular tests for the shear char-
acterization of composite materials because of the sim-
ple loading configurations, specimen geometries and
lower specimen preparation costs. The fixture used in
this analysis (Fig. 1) is a modification based upon the

*To whom correspondence should be addressed.
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traditional Iosipescu shear test® and the Arcan in-plane
stress method.* It was designed by Broughton et al.5¢
with the capability of determing failure properties for a
plethora of composite systems tested in pure shear and a
biaxial combination of shear/tension or shear/compres-
sion (Fig. 1(b)). The fixture consists of two stainless
steel halves, each 100 mm wide. One half of the fixture
displaces downward while the other is fixed. Four load-
ing blocks, two on each side are symmetrically offset
relative to the specimen centerline (notch—root axis) and
generate uniform, biaxial, shear dominated stress fields
at the specimen center. The loading blocks are fixed to
disks which house the double edge-notched beam speci-
men (Fig. 2) and are indexed according to relative angle
of the applied load. Each index represents a 5° incre-
ment with the total maximum rotational range being
+45° shear/tension (— or clockwise) or shear/com-
pression (+ or counter-clockwise). The holes in the center
of each rotating disk allow for strain gage attachment,
acoustic emission waveguides and viewing during testing.
Previous analyses have adopted the fixture for obtaining
mixed mode failure properties unidirectional graphite/
epoxy, Ti/SiC composites and teak wood.>®

2 POTENTIAL FAILURE MECHANISMS

Recently, the biaxial failure properties of quasi-iso-
tropic graphite/polyimide, textile structural composite
Tosipescu specimens have been investigated by using the
biaxial Iosipescu method at room temperature.!%!! The
composite systems, fabricated at the NASA Lewis
Research Center, met the following specifications:

Fabric:  T650-35, 8-harness satin cloth

Ply Layup: 16-ply with floating undulations (warp-
©  aligned)

Matrix: PMR-15

Q and R: Ultrasonic inspection
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(a)
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compression ; tension
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Fig. 1. (a): Biaxial Iosipescu test fixture; (b) Iosipescu specimen under in-plane biaxial stress state—(a) counter-clockwise rotation,
(b) clockwise rotation.

After testing several Iosipescu specimens in shear, shear/
compression and shear/tension,!® it was noted that the
failure process was significantly different in comparison
to previously reported failure mechanisms observed in
either isotropic materials or unidirectional composites.>?
Moreover, the mechanical response of the Tosipescu
specimens appeared to be dependent on the external
biaxial loading conditions.

2.1 Failure of unidirectional Iosipescu specimens

For 0° unidirectional specimens (fibers oriented along
the long axis of the Iosipescu specimen), failure under
all loading conditions, either shear or biaxial, occurs as
a result of axial splits initiated at the roots of the not-
ches.>® These splits form parallel to the fibers and pro-
pagate on one side of the notch tip away from the
nearest loading point. The split formation is always
manifested by two successive drops on the load dis-
placement diagram. Unidirectional composite speci-
mens with 90° fibers (fibers oriented along the notch
root axis) always fail catastrophically. For all loading
angles, cracks originate at the notch root and propagate
in an unstable manner parallel to the fibers.

The failure process in both 0° and 90° oriented uni-
directional Iosipescu specimens can be easily determined
since the failure of the specimens is usually through the
thickness and the cracks are visible on the specimen
surface. For the fabric composites, the failure process is
much more complex and can vary through the thick-
ness. In this case, the failure characteristics cannot be
determined by examining the specimen surface only,
therefore a detailed analysis of damage through the
specimen thickness is required.

It has also been reported!? that cross-ply graphite/
epoxy laminates tested in shear using the traditional
Tosipescu method failed in a stable manner. The failure
was associated with large damage zones developed in
the gage sections of the specimens. It is feasible to
assume, at this point, that failure characteristics of the
graphite/PMR-IS woven fabric will resemble those
observed in the cross-ply specimens subjected to shea;—
2.2 Failure of graphite-fabric/PMR-15 iosipescu
specimens ‘

The load/displacement diagrams for the graphite/
PMR-15 Iosipescu specimens tested in shear as well as

i
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Fig. 2. Schematic of Tosipescu specimens suitable for testing in the biaxial Iosipescu fixture.
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| Fig. 3. Load/displacement diagrams for graphite/PMR-15 Iosipescu specimens tested under shear and biaxial, shear dominated
’ loading conditions.

shear/tension and shear/compression are shown in pared to graphite/epoxy laminates. Specimens tested

‘ Fig. 3. The curves presented in Fig. 3 exhibit a max- under shear/tension loading conditions were the only#
imum load followed by a sudden drop. This phenom- exceptions to those observations. Here, the tests resulted
enon was observed for all specimens tested in this study. in a significant increase in load for very high displace-

‘ The results also reveal a general trend towards stability ments followed by another ‘trigger’. In all cases, this

| of the process after the initial ‘damage trigger’ as com- process repeated itself 2 to 3 times.
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Fig. 4. Scanning electron microscope micrograph of cracking
within the notch root as viewed looking from the top.

The tested specimens were examined and the most
important surface features of their damage zones were
determined:

1. Large damage zones developed in the gage section
of the specimens were observed. The zones con-
sisted of multiple surface cracks (Fig. 4). It was

almost impossible to determine the mode of failure

most prevalent i.e. intralaminar, interlaminar or
translaminar.

2. The damage zones were associated with significant
and permanent out-of-plane deformations (bul-
ging) on the surfaces of the specimens (see Fig. 5).

It seems that the specimen surface bulging devel- .

oped just before the ‘damage trigger’.

3. The damage zone morphology was almost iden-
tical for all loading angles. It appears, however,
that damage zone size was slightly smaller in those
samples tested in shear/compression in compar-
ison to the zones developed under biaxial shear/
tension loading conditions.

View
- Plane

\

X

Fig. 5. Scanning electron microscope micrograph_showing the .

out-of-plane deformation and internal cracking.

K. Searles et al.

2.3 A need for refined image analysis techniques

In order to thoroughly evaluate the damage zone
developmient and mode or modes of failure most pre-
valent in the graphite/PMR-15 Tosipescu specimens
under shedr dominated, biaxial loading conditions, we
need to evaluate the damage not only on the specimen
surface, but also within the specimen. This requires an
acceptable method for specimen dissection and image
reconstruction. Typical methods currently in use rely on
scanning electron microscope (SEM) backscatter tech-
niques, texture or ‘rug’ mapping, stereo pairs, z-projec-
tions, mesh generation and solid modeling. The method
proposed in this paper will combine several of those
ideas and yield an outcome with potentially more useful
information regarding the initiation and development of
damage in the specimens through their thickness.

3 IMAGE ANALYSIS PROCEDURE

The experimental procedure followed in this investiga-
tion was to capture and perform a qualitative analysis
of SEM images from planar specimen slices (serial sec-
tions), reassemble the slices in 3-dimensional space and
visualize the net volumetric effects of damage.

One graphite/PMR-15 Tosipescu specimen tested in
shear was analyzed. The load/displacement diagram for
this particular specimen is shown in F ig. 3. The internal
damagé in the gage section of the shear tested specimen
was investigated. :

~ 3.1 Specimen preparation

Following mechanical testing, the central section of the
80mmx20mm specirien was removed along the SEM

‘cutting planes (see Fig. 6) via a Buehler Isomet low

speed saw. All cuts were made using a diamond tip cir-
cular blade and copious amounts of fluid. Once the
central section was removed, the surface of the sample
was saturated with Gatan G-60 quartz-crystalline epoxy
under 45 psi of pressure. The epoxy has a fairly low
viscasity, needs to be temperature cured and is capable

. of making sub-micron adhesive joints.

- After 24h of pr’e‘ésurization and curing, the specimen
was placed in a 2-5in diameter container and hard

“mounted with specithen preparation epoxy. This

allowed for stable mounting in the SEM and safer
handling diifing polishing with lapping disks. The
encapsulated section necessitated the need for a special
holder capdble of indexing up an equidistant value after

- each slice removal in order to maintain the appropriate

working distance in the SEM.

3.2 Image dapturing - )
The hard mount was initially polished until the top™
planar surface of the specimen section was exposed.
This was designated as the z-axis reference surface and

tagged index-00. Two sets of thrée locator holes were
'used to mark the regions of interest (ROIs). One of the

|
w



Evaluating internal damage in fabric composites 1611

Fig. 6. Schematic showing the orientation of cutting planes for removing a Sample section for analysis.

. &=
hole sets was located at the section center and the other - After g,xpojs_i‘ng index-OQ, the section was sputtered
set was located at the top notch as shown in Fig. 7. The ~ ~ with approximately 150 A of Au-Pd deposit from a
holes served to define x-y planes by which sequential Technics Hummer II D.C. Sputtering System. This was

Fig. 7. Removed section §howing notch and center target locati§ns and orientation.

& slices could be accurately aligned in the SEM. . . done to prevent localized charging and poor image
|
|
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sampling during the image capturing process. All ima-
ges were captured using the Zeiss Model 960 analytical
scanning electron microscope in backscatter mode. The
working distance was fixed at 16 mm, the beam current
was 20kV and the maximum magnification set by the
screen capture board and locator hole separation was
45x. Subsequent to capturing index-00, a 350 um+
25um slice was removed to expose the next layer
(index-01) and each exposed layer was again saturated
with epoxy. Capturing and polishing was consecutive
through index-04. At this point, it was stopped because
symmetry along the mid-line was assumed and ensuing
indexes would mirror previous indexes.

The entire specimen preparation and image capturing
processes were subsequently repeated using an untested
sample in order to determine the effect of the specimen
preparation process on the damage initiation in the
composite.

3.3 Image processing

Subsequent to capturing each index, two-dimensional
damage maps were generated on a 120 MHz Pentium
PC using the public domain program NIH Image
(developed at the US National Institutes of Health and
available on the Internet at http://rsb.info.nih.gov/ nih-
image/). Indexes 00-04 were treated separately for both
the center target and the notch target. A low-pass
smoothing filter was applied in conjunction with a 3x3
median (rank) filter to each index and threshold was
manually adjusted. This established a perimeter outline
for each area of detected damage, i.e. determined via
contrast changes. For this analysis, 3x3 smoothing
kernels of the form:

1 11 1 11
1 1 1 or 1 4 1
111 111

were assumed to remove noise from one-dimensional
or two-dimensional signals while preserving image
information content. According to Bovik et al.,13 the
two-dimensional median filter may be defined as fol-
lows:

AA’,-‘,- = median[X,-,‘,- : (z’,])eW(i,j)}

where W(i, ) reflects centering of the filter window at
image coordinates (i, j). Essentially, each pixel within a
3x3 neighborhood was replaced with a median value or
all nine pixels were sorted and the center replaced with a
median from the neighborhood. Application included
median, multi-pass prefiltering to suppress noise,
improve thresholding and yield a consistent estimation
of edges.

Once edge detection was complete, the maps were
stacked in order and averaged, resulting in two-dimen-

sional composite skeletons for each target. At this point,
a partial quantitative analysis was made regarding the
location and significance of damage and each outline
was tagged as an object, counted and analyzed to
determine area fractions of damage as a function of
depth from index-00 (section surface). All tagged
objects were analyzed using the public domain program
UTHSCSA Image Tool 1.25 (developed at the Uni-
versity of Texas Health Science Center at San Antonio,
TX and available from the Internet by anonymous FTP
at maxrad6.uthscsa.edu). Important characteristics of
interest were the number of objects per index, the area
of each object in square pixels, the mean area size x)
and standard deviation (o).

The final step in image processing procedures -
involved creating three-dimensional projections from
manipulated image stacks. Each index was re-sampled
and one of two sharpening 3x3 spatial convolutions
was implemented using the kernels below:

-1 -1 -1 -1 -1 -1
-1 9 —1| or |-1 12 -1
-1 -1 -1 -1 -1 -1

A stack averaging plug-in was used on each of the index
windows for a given target, producing a new image
which was a pixel-by-pixel average of all index windows
input into the stack. Each stack was processed into a
surface using 3D View 1.00 (a public domain package
available via http://physics.usyd.edu.au//rnathewa/,
developed as an add-on to NIH Image, by I. Huxley at
the Physical Optics Dept, School of Physics, University
of Sydney). According to Huxley, the program uses the
autofocus method, finding surface heights from max-
imum intensity points in each column of pixels. In this
analysis, surfaces were rendered for comparison from
center and notch targets for both untested and
mechanically tested Iosipescu sections.

4 IMAGE ANALYSIS RESULTS AND DISCUSSION

Figures 8 and 9 present two-dimensional damage maps
for the shear tested graphite/polyimide Iosipescu speci-
men. The shaded areas shown in these maps represent
damage generated at the specimen center (Fig. 8) and an
area very close to the notch root (Fig. 9), respectively.
Each map denotes an approximate area on the specimen
of 9mm?, Below each pixel-by-pixel averaged composite
map a profile plot is presented showing the relative pixel
contrast intensities by average gray values as a function
of image width. The profile plot illustrates where the .
majority of cracks is distributed across each map an
gives an indication of the size of cracks compared to the
width of the map. From these maps, the location and
magnitude of damage in the examined areas can be
estimated.
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After the shear test, the examination of the specimen
surface revealed that the fiber bundles were reoriented
with respect to their initial orientations.!® Before the
test, the bundles were oriented along both the long axis
of the specimen and the notch root axis. Due to the
large shear stresses generated during the Iosipescu shear
test, bundle rotation took place in the middle portion of
the specimen with the final bundle orientation being
approximately 45° with respect to the notch root axis.

It is quite possible that the diagonal shaded areas
shown on each map represent a combination of intrala-
minar failures at the fiber bundle-matrix interfaces and
failure at weave (warp/fill) undulations or ‘crimps’.

Very little cracking is evident in the longitudinal
direction (direction parallel to the long axis of the spe-
cimen). Vertical cracks (damage zones) dictated by

299

Fig. 8. Two-dimensional map and corresponding profile plot of damaged material center target.

much larger areas seem to represent the interlaminar
failure process between the layers. It is possible that one
or several of the vertical cracks could be associated with
the load-drops shown in Fig. 3. It is assumed that the
shearing process forces the bundles to rotate and fail at
the undulations as progressive intralaminar damage
develops.

Simultaneously, the ends of the specimen move
toward the center and kinking occurs. At some critical
point during the loading process, interlaminar cracks
develop and propagate, allowing the specimen to bulge
outward from the centerline as shown in Fig. 5. If the
fracture toughness of the interfaces between the layers is
low, some of the interlaminar cracks can propagate
catastrophically along the specimen causing the load
drops.

e
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Fig. 9. Two-dimensional map and corresponding profile plot of damaged material notch target.

Since it is possible that damage could be induced into
the specimen during the specimen preparation process,
an untested specimen was also subjected to the polishing
and epoxy curing procedure. Figures 10 and 11 repre-
sent untested (virgin) specimen center and notch target
maps derived using the same techniques as previously
mentioned. The differences between tested and untested
center target maps are obvious as are the differences
between tested and untested notch maps. The darker
areas located on the maps for the untested targets most
likely represent undulation resin pockets or in situ
manufacturing voids. No visible damage to the compo-
site caused by the specimen preparation process can be
observed in Figs 10 and 11.

An important observation can be made by comparing
the damage maps presented in Figs 8 and 9.

It is obvious that the amount of damage generated in
the specimen center is significantly higher in comparison
with the area close to the notch root. Therefore, it can
be concluded that the specimen developed large shear
stresses at its center without any stress concentrations
present at the roots of the notches. This effect will most
likely be observed in the specimens tested under thg;_
biaxial shear/tension and shear/compression loading
conditions.

Damage area fractions represent the ratio of crack-
inclusive areas to the total area. In this study, all images
captured retained a 230400 square pixel area or
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Fig. 10. Two-dimensional map and corresponding profile plot of untested material center target.

480x480 resolution. Figure 12 illustrates the difference
between the center and notch target measured damage
as a function of depth from the surface. Clearly, damage
accumulated near the Iosipescu specimen upper notch is
less significant compared to the center. Also, the notch
target area fraction oscillates between 3 and 4%, while the
center target area fraction progresses from 8 to 12-5%. It
appears that the shear initiated, catastrophic failure (the
load drop in Fig. 3) may originate near the specimen
centerline and propagate outwards through the thick-
ness and the specimen length. Figure 13 compares
respective targets in the untested material, showing
ranges from 0-3 to 0-68%. These results seem reason-
able and tend to enforce the belief that polishing does

not significantly alter the state of the material after
testing. '

Figure 14 shows the projected three-dimensional
reconstruction of the center and notch SEM targets
from an assembly of index pairs 00-04. It can be seen
from these figures that damage near the notch is not as
pronounced and the majority of cracks follow diagonals
similar to patterns where the warp/fill undulations are
located. The projections give the illusion of transpar-
ency, but they actually represent a compilation of depth
and intensity maps derived from the two-dimensional
crack-laden stack averages. The darker corner areas are
portions of the holes used to align each image from
surface to sub-surface in sequence.
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Fig. 11. Two-dimensional map and corresponding profile plot of untested material notch target.
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Fig. 12. Approximated area fraction as a function of depth
from the specimen surface for both damaged material targets.
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from the specimen surface for both untested material targets.
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(a)

(b)

Fig. 14. Reconstructed three-dimensional projections of damaged material targets created from intensity and depth maps: (a) center
target, (b) notch target.

Finally, Fig. 15 shows 3-D projections of untested 1. The proposed image analysis technique can be
material assembled in the same manner as previously successfully applied to investigate damage initia-
described. It should be noted that the regularly shaped tion and development in woven textile composites.
flaws are indicative of resin rich pockets, voids or ima- Three-dimensional damage maps for a shear tested
ging aberrations and show no propensity towards the Tosipescu woven textile composite specimen have
initiation of crack sites during the specimen preparation been generated. It has been shown that the speci-
process. men preparation process does not alter the state of

damage intact after testing.
2. It appears that for 8-harness woven textile com-

5 CONCLUSIONS ~ posites such as graphite/PMR-15, the presence of
. ‘ relatively sharp notches in the Iosipescu specimens
The following conclusions can be drawn from the . does not affect the failure process. It has been

results presented in this study: found that the majority (50% more) of damage
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(a)

(b)

Fig. 15. Reconstructed three-dimensional projections of untested material targets created from intensity and depth maps: (a) center
target, (b) notch target.

occurs in the central area of the specimen gage
section. No significant damage has been detected
at the roots of the notches. Therefore, it can be
concluded that for this particular composite sys-
tem, the Iosipescu shear test provides a uniform
stress field in the gage section of the specimen.
From damage area fraction results, the number
and size of internal cracks have been determined
through the specimen thickness. The amount of
damage increases as a function of the sub-surface
depth and it is believed that this behavior is para-
bolic in nature with the maximum amount of
damage occurring in the vicinity of the specimen
mid-line. This seems to fit the explanation for the
symmetrical out-of-plane deformation or bulging
on the front and back side of the specimen.
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Abstract

In this paper the effects of specimen sliding within the biaxial Iosipescu fixture and geometric non-linearity on the mechanical
response of isotropic, composite and adhesively bonded isotropic and composite Iosipescu specimens subjected to shear under small
displacement conditions have been modeled by non-linear finite-element techniques. The mechanical response of the specimens to
the external applied loads has been modeled by assuming different friction coefficients between the loading blocks of the Iosipescu
fixture and the specimens. It has been shown that the sliding of the specimen within the fixture in conjunction with geometric non-
linearity (large specimen deformation) can affect, for some specimen geometries, the load/displacement diagrams and internal stress
distributions in the gage sections of the Iosipescu specimens. These effects are especially strong in the case of adhesively bonded
Tosipescu specimens with either isotropic or composite adherends. However, for 0° unidirectional graphite/epoxy composite Iosi-
pescu specimens subjected to small shear loadings the effects of specimen sliding and geometric non-linearity on the load/displace-

ment diagram and internal stresses appear to be negligible. © 1999 Elsevier Science Ltd. All rights reserved.

1. Introduction

In the traditional Iosipescu shear test [1], isotropic,
composite or adhesively bonded Iosipescu specimens are
loaded by the application of two counteracting
moments produced by two force couples (see Fig. 1). A
means of applying a shear loading to the specimen was
proposed for the first time by Adams and Walrath [2].
The first Wyoming Iosipescu fixture designed by Adams
and Walrath was later redesigned in order to reduce
large compressive stresses generated in the gage section
of Iosipescu specimens [3,4]. The Iosipescu specimen
loaded in the modified Wyoming fixture has become one
of the most popular test methods for the shear char-
acterization of composite materials. The Iosipescu shear
test was significantly modified a few years ago at the
University of Cambridge by Broughton et al. [5]. In
their biaxial Iosipescu test fixture Iosipescu specimens
can be tested not only in shear but also under either
shear/tension or shear/compression loading conditions
(see Fig. 2) [5,9]. Various biaxial shear dominated stress
states can be generated by rotating the specimens within
the biaxial Iosipescu fixture. The first version of the
| biaxial Iosipescu fixture [5,9] was based on the loading
‘ block configuration very similar to the original Wyoming

* Corresponding author.

PII: S0266-3538(98)00104-3

design [2]. Recently, the biaxial Iosipescu fixture has
been modified [10] by introducing new loading blocks,
that are very similar to the modified Wyoming design.

Despite the fact that the Yosipescu shear-test method
is now ASTM Standard D 5379 [11], the proper
numerical solutions of internal stresses in the shear
Tosipescu specimens, taking into account the effects of
specimen sliding and geometric non-linearity caused by
large specimen deformations within various Iosipescu
fixtures, are not available. In a series of papers we
would like to present comprehensive numerical studies
of the effects of sliding and geometric non-linearity on
the mechanical response of various Iosipescu specimens
subjected to either shear or biaxial loading conditions.
In this paper, these effects are discussed with respect to
isotropic, unidirectional composites and adhesively
bonded Iosipescu specimens subjected to relatively small
shear deformations (less than 1 mm). The type of load-
ing investigated in this study simulated the original
design of the Wyoming fixture [2] and the biaxial Iosi-
pescu fixture [5,9] as far as the loading block configura-
tion is concerned. The influence of different loading
block geometries, including the loading conditions
recommended by the ASTM standard, and biaxial
shear-dominated loads on the stresses and strains in the
TIosipescu specimen will be discussed in our subsequent
papers [12,13].

0266-3538/99/$ - see front matter © 1999 Elsevier Science Ltd.. All rights reserved.
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Fig. 1. Tosipescu shear test.
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Fig. 2. Biaxial loading conditions in the biaxial Tosipescu fixture.

The effect of specimen sliding within the shear Iosi-
pescu fixture was investigated for the first time by Ho et
al. [14]. In their finite-element analysis, 0° and 90° uni-
directional graphite/epoxy Iosipescu specimens were
analyzed with the assumption that the specimens were
loaded in pure shear in the fixture recommended by the
ASTM standard (the modified Wyoming design).

The authors have drawn the following conclusions
based on their non-linear finite-element simulations of
the mechanical response of the specimens to shear:

(a) (a) The coefficient of friction between the loading
blocks and the 0° and 90° unidirectional graphite/
epoxy specimens were 0.3 and 0, respectively. The
effect of frictional forces on the test section shear
stress was negligible for 0° and 90° specimens.

(b) (b) The effect of geometric non-linearity due to
the change of specimen geometry on the shear
response of 0° and 90° specimen was negligible.

(¢) (c) The only significantly contributing factor to
the non-linear response of the composite Iosi-
pescu specimens to shear was the non-linear
material behavior.

In the numerical analyses performed by Ho et al. [14],
the non-linear shear-stress/strain response of a unidirec-
tional graphite/epoxy composite was modeled by assum-
ing different friction coefficients between the loading
blocks of their Iosipescu fixture and the specimens as well
as the non-linear constitutive equations. The simulated
shear-stress/strain curves were subsequently compared to
the experimentally determined shear-stress/strain dia-
grams. If the simulated and experimental curves did not
agree, small modifications to the coefficient of friction
and the constitutive equations were made. It is difficult to
believe that the friction coefficient determined numeri-
cally for the 90° specimen could be zero. The numerically |
determined shear response of the specimens depended on
both the assumed friction coefficients and the constitutive
equations. Most likely the constitutive equations used in
the analysis were not strictly accurate. It can be expected
that the friction coefficient of the 90° specimen is higher
than for the 0° oriented fibers since the fibers cut perpen-
dicular to the specimen/loading block frictional interface
must increase the resistance to sliding of the specimen in
comparison with the specimen with the fibers parallel to
this interface.

During the Iosipescu test large compressive stresses
develop in the specimens near the loading blocks. These
stresses, in some cases, can cause severe crushing of a
composite, thus modifying the frictional properties of
the interface during the experiment. It is possible that
the friction coefficient at the loading block/specimen
interface will change significantly, especially for large
load values. Moreover, the friction coefficient at the
loading block/specimen interface can vary with tem-
perature in the high-temperature testing of polymer-
matrix composites [15]. In addition, large specimen
deformations can occur when graphite/polyimide speci-
mens are tested to failure under either shear or biaxial-
shear-dominated loading conditions. Obviously, these
effects should be less pronounced in the standard Iosi-
pescu shear test, since the loading blocks in the fixture
recommended by the standard are much longer in com-
parison with the loading blocks used in the original
Wyoming design, and the biaxial Tosipescu fixture.
Nevertheless, the effects of specimen sliding and geo-
metric non-linearity on the internal stresses in the Iosi-

- pescu specimens need to be better understood if the

proper failure analysis of composites is to be performed

. . S g
using either the standard shear test or the biaxial Iosi-
pescu test methods.
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2. Finite element computations

An attempt was made in this study to evaluate sepa-
rately the effects of specimen sliding and geometric non-
linearity (due to the change of specimen geometry) on
the global mechanical response and internal stresses of
various metal and composite Iosipescu specimens sub-
jected to shear under the conditions of small applied
displacements. The non-linear material behavior has not
been considered in this research.

2.1. Specimen geometry and boundary conditions

Five different Iosipescu specimens were analyzed in
this study (Fig. 3). The internal stresses and the global
deformations for an isotropic (aluminum) Iosipescu

specimen (Fig. 3(a)) were numerically determined as a
function of different friction coefficients between the

QA
aluminum

"\
@

aluminum

/ \
/ y AR\

N\

adhesive layer (epoxy)

®)

60% graphite fiber reinforced epoxy

I

adhesive layer (epoxy)
©

| —60% graphite fiber reinforced epoxy —

loading blocks of the Iosipescu fixture and the speci-
men. The recently suggested adhesively bonded Iosi-
pescu specimen [16] [17] [18] was also investigated with
isotropic (Fig. 3(b), aluminum) and unidirectional gra-
phite/epoxy composite (Fig. 3(c)) adherends. In addi-
tion, unidirectional graphite/epoxy Iosipescu specimens
were modeled with the fiber orientation either parallel
to the long axis of the specimen (0° orientation,
Fig. 3(d)) or to the notch root axis (90° orientation,
Fig. 3(e)). The specimens were numerically loaded
assuming the following boundary conditions:

(1) Displacement boundary conditions for the linear
elastic model with zero friction (Fig. 4(a)). The right-
side of the specimen is loaded by prescribed vertical
displacements (u,) on the loading blocks whereas the
loading blocks on the left-side of the specimen are con-
strained against any vertical displacements (u,). This
model assumes free axial movement of the specimen

: Y
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7\

@
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60% graphite fiber reinforced epoxy
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Fig. 3. Various Iosipescu specimens: (a) isotropic aluminum specimen; (b) adhesively bonded specimen with aluminum adherends; (c) adhesively a.-
bonded specimen with unidirectional graphite/epoxy adherends; (d) unidirectional 0° fiber oriented specimen; and (e) unidirectional 90° fiber
oriented specimen.
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Fig. 4. Displacement boundary conditions used in the finite element analyses: (a) linear elastic model with zero friction; (b) linear elastic model with
infinite friction; (c) non-linear model with specimen sliding along the loading blocks and geometric non-finearity; and (d) finite element representa-
tion of the adhesive bonded and unidirectional composite Iosipescu specimens.

along x together with the loading blocks, which are
perfectly bonded to the specimen.

(2) Displacement boundary conditions for the linear
elastic model with infinite friction (Fig. 4(b)). In this
model the right-side of the specimen is loaded by pre-
scribed displacements (u,) on the loading blocks with
the blocks constrained against the movement along x
(by assuming u,. = 0). The loading blocks on the left-side
of the specimen are fully constrained against any trans-
lation movements (u, and u,=0). Similar to the pre-
vious case, contact elements were not used, with the
blocks perfectly bonded to the specimen.

(3) Displacement boundary conditions with contact
elements between the specimen and the loading blocks
(Fig. 4(c)). In this model, the specimen center is con-
strained against the vertical and horizontal displace-
ments (u, and u, =0). The blocks on the right-side of the
specimen have prescribed displacements of —u/2

whereas the blocks on the opposite side of the specimen
are loaded by the positive displacements of the same
magnitude. Thus, the total prescribed displacement act-

‘ing on the specimen is equal to u. Using these boundary

conditions the effect of specimen rotation (biaxial shear
dominated loading generated by the biaxial fixture) can
also be investigated with sliding and geometric non-lin-
earity [21].

In the above models the loading blocks were assumed
to be linear elastic and made out of steel. The dimen-
sions of the blocks were 10 mm in length and 5 mm in
height. The thickness of the specimen was assumed to be
1 mm. The material properties of the Iosipescu speci-
mens investigated in this study are listed in Table 1. The
finite element computations were performed using
ANSYS 5.2 [19]. .

In the finite element computations two dimensional
representations of the JIosipescu specimens were
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Table 1
Material properties used in the finite element computation

Aluminum  60% unidirectional graphite/epoxy Epoxy adhesive Steel loading blocks
Young’s modulus (MPa) E=70000 Ey, =212000 E;; =7240 E=3500 E=400000
Shear modulus (MPa) G12=26316 G,2=4070 G2=1259 G\ 2= 154000
Poisson’s ratio v=0.33 v12=0.33 v,;=0.082 v=0.39 v=0.30
constructed (see Fig. 4(d)) using six-node triangular and
eight-node quadrilateral isoparametric elements. The Ay Q p,, total reaction forces

frictional interfaces between the loading blocks and the
specimens were modeled using two dimensional point-
to-surface contact elements. Along the specimen to fix-
ture contact regions, Coulomb friction was assumed.
The loading procedure was divided into 10 load steps.
For each load step, the relative displacements prescribed
on the loading blocks were increased by 0.1 mm. At the
end of the last load step, a total loading of 1 mm was
applied. For each load step, the SRSS (the square root
of the sum of squares) of the imbalance forces was cal-
culated. The force convergence criterion was assumed
with the SRSS of the imbalance forces smaller than
0.1% of the SRSS of the loading forces. The maximum
prescribed displacement of 1 mm was chosen since the
failure of the investigated composites and adhesively
bonded composite systems could occur at this load level
[5,7,16].

3. Results and discussion

3.1. Specimen sliding and reaction forces at the loading
blocks

A comprehensive study of specimen deformations
within both the biaxial and modified Wyoming Iosi-

pescu shear fixtures has been performed by K. Searles, .

Y. Han and M. Kumosa [20,21,23]. In this paper, a
short description of the specimen deformations in the
biaxial Tosipescu fixture loaded in shear is presented. It
should be mentioned here that the biaxial Iosipescu fix-
ture has significantly shorter blocks than the modified
Wyoming fixture. The non-linear analysis performed by
Ho et al. [14] was based on the modified Wyoming fix-
ture with significantly longer loading blocks. Therefore,
the conclusion from their study may not be applicable
to the case of the biaxial Iosipescu fixture. It can be
speculated that the effects of specimen sliding and geo-
metric non-linearity on the stress distributions in the
Tosipescu specimens can be significantly dependent on
the loading block geometries. The non-linear effects
should be more pronounced in the cases when short
loading blocks are used. This problem has been recently
studied by Odegard et al. [23].

The reactions on the inner and outer loading blocks
for the isotropic aluminum Iosipescu specimen for a

reaction forces at the nodes

specimen

centre of the specimen
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@
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1

o

e
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1
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e
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i
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1Ny reaction forces at the nodes

total reaction forces

P2x=0 P2y=-3039N-
®

Fig. 5. Reaction forces and specimen deformation at the inner (a) and
outer (b) loading blocks from the linear model with zero friction for
the isotropic (aluminum) Iosipescu specimen loaded in shear by a
prescribed displacement of 1 mm.

prescribed displacement of 1 mm are shown for the lin-
ear elastic case with zero friction (Fig. 5) and the non-
linear case with a friction coefficient of 0.3 and geo-
metric non-linearity assumed (Fig. 6). The specimen
sliding at the inner and outer loading blocks is also
illustrated in Fig. 6 for the non-linear case. Obviously,
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Fig. 6. Reaction forces and specimeén deformation at the inner (a) and
outer (b) loading blocks from the non-linear model with sliding and
geometric non-linearity for the isotropic (aluminum) specimen loaded
by a displacement of 1 mm with a friction coefficient of 0.3.

no sliding of the specimen along the loading blocks was
observed in the linear case since the loading blocks were
bonded to the specimen allowing the movements of the
specimen with the loading blocks along the x axis. It can
be seen in Fig. 6(a) and (b)-that the movement of the
specimen along the inner loading blocks (dx) is in the
direction away from the center of the fixture whereas
the specimen sliding along the outer blocks is toward
the center. These directions of sliding were observed for
all the specimens considered in this study. However, the
movement of the specimen at the inner and outer load-
ing blocks is strongly dependent on the type of loading
[20]. It can also be seen in Fig. 6(a) that the specimens
can separate from the inner loading blocks creating a
gap (dy) which is again strongly dependent on the mag-
nitude and type of loading (shear, shear/tension, shear/
compression). The separation of the specimen from the

loading blocks during the test reduces the contact area
between the blocks and specimen, thus significantly
affecting the distribution and magnitude of the reaction
forces.

The reaction forces on the loading blocks affect the
stress conditions in the Iosipescu specimens. Since hor-
izontal constrains on the loading blocks for the linear
case with zero friction were not imposed, no shear
reactions were observed at the inner and outer loading
blocks. In the non-linear case, however, both the nor-
mal and shear reaction forces develop at the inner and
outer loading blocks and are strongly dependent on the
magnitude and type of loading, as well as the specimen
configuration. It is important to note that the total
reaction force Py, on the inner loading block, obtained
by integrating the nodal reaction forces, moves slightly
towards the specimen center (distance ¢ in Figs. 5a and
6a) with a decrease in the friction coefficient for the
same magnitude of the shear load applied to the speci-
men. The position of the total reaction force Py, does
not change significantly with the friction coefficient
assumed at the interface.

The normal and shear reactions on the loading blocks
can be used to determine the global loads on the Iosi-
pescu specimens for different prescribed displacements
and friction coefficients. By summing up the reaction
forces P,,, P, y» P2x and P, the magnitude and direc-
tion of the global reaction force P can be established.
Obviously, for the non-linear cases the direction of P
does not coincide with the direction of the applied load,
which in shear is along the notch root axis. However,
the vertical component of P will represent the total load
on the specimen for a given prescribed displacement.
Then, the load/displacement diagrams can be deter-
mined for various specimen configurations, loading
conditions and the frictional properties of the loading
block/specimen interfaces with and without geometric
non-linearities considered.

3.2. Numerical load|displacement diagrams

Fig. 7(a)(e) present the loading diagrams for the
isotropic aluminum (Fig. 7(a)), adhesively bonded alu-
minum/epoxy (Fig. 7(b)), adhesively bonded unidirec-
tional composite (Fig. 7(c)) and unidirectional graphite
epoxy/epoxy Iosipescu specimens with the 0° (Fig. 7(d))
and 90° (Fig. 7(e)) fiber orientations, respectively. The
diagrams were computed for the two linear elastic
models (zero and infinite friction) and the non-linear
models with different friction coefficients (with and
without geometric non-linearity). In Fig. 7 only the
results obtained for a friction coefficient of 0.3 are
shown.

It can be seen in Fig. 7(a) that for the aluminum spe-*
cimen the load/displacement diagram obtained from the
linear elastic model, with zero friction, is very similar to
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Fig. 7. Load/displacement diagrams of various Iosipescu specimens determined from four different models: (a) aluminum specimen; (b) adhesively
bonded specimen with aluminum adherends; (c) adhesively bonded specimen with unidirectional composite adherends (d) unidirectional 0° gra-
phite/epoxy specimen; and (e) unidirectional 90° graphite/epoxy specimen.

the diagrams from the non-linear models. It can also be
noticed that the effect of geometric non-linearity on the
non-linear results is almost negligible. However, there is
a significant difference between the load displacement
diagrams obtained from the linear (infinite friction) and
non-linear finite element computations. Similar obser-
vations can be made by examining Fig. 7(b), (d) and (¢)

which represent the mechanical response of the adhe-
sively bonded aluminum specimen and the unidirec-
tional graphite/epoxy with the 0° and 90° fiber
orientations. The effect of geometric non-linearity and
sliding appear to be more pronounced in the case of the
adhesively bonded composite specimen with the uni-
directional graphite/epoxy adherends (see Fig. 7(c)).
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Under the same loading conditions the epoxy/aluminum
~ specimen shows smaller effect of large deformations that
the specimen with the unidirectional composite adher-
ends (fibers parallel to the interfaces). Most likely, the
higher stiffness of the epoxy/aluminum specimen along
the long axis of the specimen in comparison with the
composite specimen prevented specimen sliding along
the loading blocks.

The total reaction forces for a prescribed displace-
ment of 1 mm for the linear and non-linear models of
the above five different geometries of the Iosipescu spe-
cimens are presented in Fig. 8(a)(e). These figures
illustrate even better the effect of different boundary
conditions and the frictional properties of the loading
block/specimen interface on the total reaction forces of
the specimens investigated. The data shown in Fig. 8(a)
clearly demonstrate that the effect of geometric non-
linearity for the aluminum specimen is almost negli-
gible. The reaction forces are very similar for the models
with contact elements analyzed with and without geo-
metric non-linearity for different friction coefficients.
Moreover, the linear elastic model with zero friction

gave very similar results of the global reaction forces in -

comparison with the non-linear models. It can be

expected that in the actual Iosipescu shear experiment
the friction coefficient between the aluminum specimen
and the steel loading blocks will be somewhere between
0.1 and 0.3. Therefore, the simple linear elastic model
will certainly provide very accurate estimates of the
load/displacement curve for this particular specimen.
The total reaction force acting on the specimen modeled
with infinite friction is significantly higher than the
loads obtained from the zero friction linear model and
the non-linear models.

The results obtained from the computations of the
total reaction forces of the adhesively bonded aluminum/
epoxy losipescu specimen (Fig. 8(b)) show very similar
trends. Again, for this particular specimen, the non-linear
computations of the load/displacement diagrams are not
necessary since the linear elastic model with zero friction
provides very similar estimates of the total reaction force.
Similar to the previous diagram for the friction coefficients
ranging from 0.1 to 0.3 the total load on the specimen
determined from the linear elastic model with zero friction
is between the loads from the non-linear models analyzed
with and without geometric non-linearity. o

The effect of geometric non-linearity on the load/dis-
placement diagram for the adhesively bonded unidirec-
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specimen with unidirectional composite adherends, (d) unidirectional 0° graphite/epoxy specimen, and (¢) unidirectional 90° graphite/epoxy specimen.

tional graphite epoxy Iosipescu specimen is significantly models with geometric non-linearity are significantly
stronger in comparison with the previous specimens (see lower than the loads determined from both the linear ,_
Fig. 8(c)). In this case the total loads for a prescribed elastic model with zero friction and the non-linear

displacement of 1 mm determined from the non-linear models when geometric non-linearity was not assumed.
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Obviously, this type of specimen must be modeled
assuming both the effect of specimen sliding along the
loading blocks and geometric non-linearity if the proper
evaluation of the load/displacement diagram is
required. The linear elastic model with zero friction will
not be accurate.

For the unidirectional graphite/epoxy. composite spe-
cimens for both the 0° and 90° fiber orientations the
effects of specimen sliding and the geometric non-line-

-arity seem to be insignificant, similar to the first two
cases (see Fig. 8(d) and (e)). It appears that for these
two specimens the load/displacement curves can be
modeled using the linear elastic model with zero friction
providing that the prescribed displacements are rela-
tively low (lower than 1 mm). :

Despite the fact that the numerical models used in
this analysis assume relatively short loading blocks, fol-
lowing the original Wyoming design of the Iosipescu
shear fixture, the effect of specimen sliding and geo-
metric non-linearity on the load displacement diagrams
of the Iosipescu specimens loaded up to 1 mm displace-
ment is almost insignificant for the aluminum as well as

the 0° and 90° unidirectional graphite/epoxy Iosipescu
specimens in comparison with the linear elastic model
with zero friction. For the adhesively bonded composite
specimen with the fibers oriented along the notch root
axis and a thin adhesive layer placed between the roots
of the notches there is a very small difference, almost
insignificant, between the loads calculated using the
non-linear model with sliding and without geometrical
non-linearity. However, the combined effect of sliding
and geometric non-linearity on the load displacement
diagram is significant. Thus, for accurate simulation of
shear behavior of the adhesively bonded composite
Tosipescu specimen, a more complex non-linear model is
needed.

3.3. Stresses at the center of the losipescu specimens

Since the combined effect of specimen sliding within
the Iosipescu shear fixture and the change in specimen
geometry can affect the mechanical shear response sf
some Iosipescu specimens in this section, the internal
stresses at the specimen center of the five different
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specimen configurations will be evaluated. The normal
and shear stresses are listed in Table 2 for the two linear
models (with zero and infinite friction) and the non-lin-
ear models with sliding and with and without geometric
non-linearity considered. For the aluminum specimen
(Table 2(a)) the effect of sliding and the change in spe-
cimen geometry appears to be negligible as far as the
shear and the normal stress G, along the notch root axis
are concerned. The normal stress o,, however, seems to
be significantly affected by these two factors. The nor-
mal stresses oy at the specimen center are positive for
the linear case and the non-linear models with zero

friction whereas for the non-linear cases with the fric- -

tion coefficients at the specimen/loading block interfaces
higher than zero the stresses are negative. This means
that the non-linear effects modify the nature of the nor-
mal stresses along the long axis of the aluminum speci-
mens making them compressive.

The stress distributions at the center of the adhesively
bonded composite Iosipescu specimens are very strongly
influenced by the specimen sliding and geometric non-
linearity effects. For the specimen with the aluminum
adherends the magnitudes of the tensile stress o, and
the compressive stress o, increase dramatically in the
non-linear models with large deformations. The linear
model with zero friction predicted an almost pure shear
stress field at the specimen center. It is obvious that the
linear model cannot be used to accurately determine the
stresses for this specimen geometry. Similar observa-
tions can be made when comparing the stresses at the
_center of the adhesively bonded specimen with the
composite adherends. Also, in this case the normal
stresses are altered by the non-linear effects.

For the unidirectional composite Iosipescu specimen
with the 0° fiber orientation the shear and normal
stresses at the specimen center obtained from the non-
linear models are almost the same in comparison with
the stresses from the linear model with zero friction.
Most likely the high stiffness of the specimen in the
direction of the fibers prevented significant sliding of the
specimen, thus reducing the effect of both sliding and
geometric non-linearity on the stress state in the speci-
men gage section. It is important to note that specimen
sliding and geometric non-linearity do not reduce the
high compressive stress oy induced by the loading
blocks. These stresses can only be significantly reduced
by using different loading blocks (i.e. the ASTM Stan-
dard) and by rotating Iosipescu specimens within the
biaxial fixture [10].

It can be seen in Table 2(e) that the non-linear effects
modify the stresses at the specimen center for the 90°
fiber orientation differently in comparison with the pre-
vious case. For this specimen both o, and oy are sig-
nificantly altered by the movement of the specimen
within the fixture. It is important to notice that the
combined effect of sliding and geometric non-linearity

on the normal stresses are especially strong. The normal
stress ox becomes compressive, especially for high fric-
tion coefficients whereas the normal stress along the
notch root axis is either positive or negative depending
on the friction coefficient. For both the 0° and 90° spe-
cimens the shear stresses at the specimen center from the
non-linear models are very similar to the stresses from
the linear model with zero friction.

The numerical results presented in this paper strongly
suggest that the effects of both specimen sliding and
geometric non-linearity are small and can be ignored in
the finite element computations of 0° unidirectional
graphite/epoxy Iosipescu specimens tested in shear in
the biaxial Iosipescu fixture with short loading blocks
for relatively small applied displacements (similar to the
observations made in Ref. [14] with respect to the non-
linear behavior of unidirectional losipescu specimens
tested in shear with long blocks). However, the non-lin-
ear effects will have a strong influence on the stress dis-
tributions in the 90° specimens. For both 0° and 90°
fiber orientations the load/displacement' diagrams are
not significantly affected by geometric non-linearity and
specimen sliding. These effects will be smaller in the
standard Tosipescu fixture [20] which has significantly
longer blocks in comparison with the block configura-
tion based on the original Wyoming design and the
biaxial Iosipescu fixture. However, for such composite
materials as fabric graphite/polyimide [15,22] failure can
occur at much higher displacements. In this case speci-
men sliding and geometric non-linearity cannot be
ignored since the specimens will be significantly
deformed at failure in any fixture.

4. Conclusions

The effects of specimen sliding and geometric non-
linearity on the mechanical response of various Iosi-
pescu specimens subjected to shear in the biaxial Iosi-
pescu fixture have been investigated using non-linear
finite-element methods. It has been shown that in gen-
eral the combined effect of specimen sliding and geo-
metric non-linearity on the load/displacement diagrams
of the Iosipescu specimens analyzed in this study is
small, and can be ignored. However, the stress distribu-
tions at the center of the specimens can be significantly
altered by the non-linear effects. Significant changes in
the stress distributions at the specimen center have been
observed for adhesively bonded and 90° graphite/epoxy
Tosipescu specimens. For 0° graphite/epoxy specimens
the influence of specimen sliding and geometric non-
linearity on the stress state at the specimen center is
almost negligible. In this case the non-linear in-plang
shear response of the specimen can only be attributed to
the material non-linear behavior.
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ABSTRACT

Several issues regarding the application of the shear and biaxial Iosipescu tests for
the shear strength characterization of unidirectional composite materials are addressed
in this article. First, the nonlinear effects of specimen sliding and geometric nonlinearity
on the mechanical response of 0° standard unidirectional graphite/polyimide Iosipescu
specimens with different loading conditions and loading block geometries have been
investigated. Second, an attempt has been made to improve the Iosipescu shear test to
eliminate normal compressive stresses in the specimen gauge section and at the same
time prevent axial splitting. Finally, several Iosipescu shear and biaxial experiments
have been performed to select proper specimen geometry and loading conditions for the
shear strength measurements of unidirectional composites.

The nonlinear effects are examined with respect to various coefficients of friction,
displacements, loading angles, and fixtures (biaxial with short and modified biaxial
with long loading blocks) using nonlinear finite-element techniques. It is shown that
the effect of nonlinearity is small on the stresses at the center of the standard Iosipescu
specimen, but significant for the stresses near the notch root up to 2 mm applied dis-
\ placements. In some cases, significant differences in the stresses calculated for different
' coefficients of friction have been observed. All of these results are somewhat consistent
for both fixtures, but with the stress components o, gy, and o,, significantly lower in
the standard Josipescu specimens tested in the fixture with the long blocks. Numerical
load/displacement diagrams show that specimen sliding and geometric nonlinearity have
a negligible effect on reaction forces in the biaxial fixture, and a significant effect on
the reaction forces in the modified biaxial fixture. Since the various combinations of
the loading conditions evaluated in this study do not eliminate transverse compressive
| stresses in the gauge section of the standard Iosipescu specimens, a major improvement
’ to the Iosipescu shear test has been proposed. Using an optimized specimen geometry
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subjected to biaxial shear/tension loading conditions, a state of almost uniform pure shear
stress can be generated in 0° unidirectional composite Iosipescu specimens without the
possibility of axial splitting along the fibers at the roots of the notches. However, it is
shown in the experimental part of this study that for the optimized Iosipescu specimen,
crushing at the inner loading blocks can significantly affect the shear intralaminar failure
process. Only by reducing the cross-sectional area of the optimized Iosipescu specimen
can the effect of crushing on the failure process be reduced without, however, high-
quality shear stress fields present in the gauge section at failure.

In 1967 Iosipescu developed a method to measure the shear strength of metals by applying
two counteracting moments produced by two force couples onto the Iosipescu specimen
(Figure 1) [1]. Adams and Walrath first applied the test to composite materials in the first
Wyoming Tosipescu fixture [2, 3]. The original design of the fixture was then modified to
reduce large compressive stresses generated in the gauge section of the specimen [4, 5]. The
modified Wyoming Iosipescu shear test has become one of the most popular test methods
for the shear characterization of composite materials, and has become the standard (ASTM
D 5379) [6]. In 1990 Broughton, Kumosa, and Hull introduced the biaxial Iosipescu fixture,
which allows the testing of Iosipescu specimens not only in shear, but also under biaxial
shear/tension or shear/compression loading conditions (Figure 2) [7]. Various biaxial stress
states can be created by rotating the specimen and the loading blocks within the fixture
[8-11]. The original biaxial Iosipescu fixture contained short loading blocks similar to the
original Wyoming Iosipescu fixture. In 1997 Kumosa et al. {12] introduced the modified
biaxial Iosipescu fixture, which features new loading geometries that are very similar to
those used in the modified Wyoming fixture [4, 5] and ASTM standard [6]. Another shear
characterization test that is similar to the biaxial Iosipescu test is the Arcan shear test
[13]. Despite some apparent advantages of the Arcan test over the biaxial Iosipescu shear
test associated with the loading of the specimen, there are disadvantages to this test that
exclude it from use in many research projects associated with the shear characterization
of composite materials. The Arcan test requires a very complicated specimen geometry,
and the specimen preparation process is very time consuming and expensive. Furthermore,
the Arcan test requires bonding between the specimen and fixture, which might become a
problem when testing unidirectional composite materials at elevated temperatures.

The first study of specimen sliding and geometric nonlinearities within the modified
Wyoming Iosipescu fixture was performed by Ho, Morton, and Farley [14]. In their analy-
sis the nonlinear effects were investigated in 0° and 90° unidirectional composite Iosipescu
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Figure 1. losipescu shear test.
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loading angle
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Figure 2. Biaxial loading conditions in the biaxial losipescu fixture.

specimens subjected only to shear. Recently, Kumosa and Han studied the combined effect
of specimen sliding and geometric nonlinearity on the load/displacement diagrams and
internal stresses of isotropic, composite, and adhesively bonded isotropic and composite
Iosipescu specimens subjected to shear under small displacement conditions using nonlinear
finite element techniques [15, 16]. They showed, by using linear and nonlinear models with
varying coefficients of friction, that for some specimen geometries the load/displacement
diagrams and internal stress distributions in the gauge section of the specimen were affected
by sliding and geometric nonlinearity. Specifically, for the adhesively bonded and 90° uni-
directional graphite/epoxy specimens, significant changes in the stress distributions did oc-
cur. For the 0° graphite/epoxy and isotropic specimens, the effects of specimen sliding and
geometric nonlinearity on the load displacement diagrams and the stresses at the specimen
center were almost negligible for displacements up to 1 mm. In the study performed by
Kumosa and Han the effect of sliding and geometric nonlinearity on the stresses near the
notch roots was not investigated. Moreover, only the biaxial Iosipescu fixture was consid-
ered, with loading blocks significantly shorter than the blocks recommended by the ASTM

.standard.

In the first part of this study, the effects of specimen sliding and geometric nonlin-
earity on internal stresses and load/displacement diagrams were investigated with respect
to 0° unidirectional graphite/polyimide Iosipescu specimens with various coefficients of
friction, displacements, loading angles, and fixtures. The effect of material nonlinearity on
the mechanical response of the specimens was not considered. A similar analysis will be
presented for graphite/polyimide fabric composite Iosipescu specimens in another article
[17]. In the second part, an optimized Iosipescu test has been developed that creates a
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high-quality shear stress field by almost eliminating the transverse compressive stress o,
along the notch root axis in 0° unidirectional composites. The new design incorporates
a new specimen configuration (based on the flat-bottomed notch specimen developed by
Adams and Lewis [18]) and another modification of the loading block geometries with the
specimen loaded in shear/tension.

The purpose of this study was to optimize the Iosipescu test in order to eliminate unde-
sirable normal stresses in the specimen gauge section which might affect the intralaminar
failure process. Despite the popularity of the Iosipescu test, this test is certainly not straight-
forward. If we examine the standard we find that the determination of shear failure in 0°
unidirectional composite Iosipescu specimens is not clear. The standard says “in [0] speci-
mens tested in the 1-2 plane, a visible crack develops at the notch root, causing a small load
drop prior to ultimate failure. The small load drop accompanying the notch root crack is not
‘considered the failure load; rather the load that accompanies failure in the test section shall
be used as the failure load.” The problem is that the standard does not indicate which failure
in the test section should be considered as the shear failure. If the intralaminar shear cracks
formed along the notch root axis are considered as the shear failure, the formation of these
cracks is still going to be affected by the compressive transverse stresses perpendicular
to the fibers caused by the loading blocks. An attempt has been made in this research to
optimize the losipescu specimen geometry in such a way that the axial splitting at the notch
root is prevented and any damage formed along the notch root axis will be caused by shear

only, without any transverse normal stresses. The following issues have been addressed in
this article:

What are the effects of specimen sliding and geometric nonlinearity on the stresses in the
0° standard losipescu specimens tested under biaxial shear dominated loads with short
and long loading blocks

How to prevent axial splitting and promote intralaminar failure due to shear only along the
notch root axis

How to eliminate transverse compressive stresses in the gauge section

Effect of specimen crushing by the loading blocks on the intralaminar shear failure process
in the gauge section.

§1. FINITE-ELEMENT ANALYSIS

The effects of specimen sliding and geometric nonlinearity were determined numeri-
cally for unidirectional graphite/polyimide Iosipescu specimens under various loading con-
ditions. The stresses at the center of the specimen and near the notch root surface as well as
the load/displacement diagrams were determined as a function of coefficients of friction, dis-
placements, loading angles, and fixtures (biaxial and modified biaxial). The finite-element
models used in this study are two-dimensional (having a thickness of unity, i.e., | mm)
and analyzed using ANSYS 5.2 [19] (with isoparametric 6- and 8-node elements). Mate-
rial properties for the composite system and the loading blocks are given in Table 1. The
properties for the graphite/polyimide composite system, along with the strength properties
mentioned later in the article, were provided by the NASA Lewis Research Center. The
stiffness and strength properties of unidirectional graphite/polyimide composites are very
similar to those of unidirectional graphite/epoxy composites. Therefore, the results given in
this article for graphite/polyimide composites are applicable to graphite/epoxy composites.

For the linear elastic model, displacement boundary conditions with zero friction were
applied (Figure 3a). The right side of the specimen was loaded by prescribed vertical dis-
placements (u,) on the loading blocks. The loading blocks on the left side of the specimen




Critical Examination of the losipescu Shear Test 233

Table 1
Mechanical properties of the graphite/polyimide composite, steel loading blocks,
and glass/epoxy composite

Unidirectional Steel Unidirectional
Graphite/Polyimide Loading Blocks  Glass/Epoxy

Young’s modulus (GPa) E,=129.6 E =200.0 E,=40.0
E,=38.6 E,=10.0

Shear modulus (GPa) Gy =43 G=175.0 Gry=4.5

Poisson’s ratio Vey =0.25 v=0.33 Vyy =0.27

were constrained against any vertical displacements. A single constraint against horizontal
displacements was placed on the left side of the specimen in order to prevent rigid-body
motion. This model assumes free axial movement of the specimen and loading blocks,
which are perfectly bonded together, along the x direction [15].

For the nonlinear models, displacement boundary conditions with contact elements
between the specimen and the loading blocks were applied (Figure 3b) [15]. The specimen
center was constrained against vertical and horizontal displacements (i, and u y=0). The
blocks on the right side of the specimen had prescribed displacements of u/2 and the
blocks on the opposite side were loaded by a negative displacement of the same magnitude.
Thus, the total prescribed displacement acting on the specimen is equal to u. For nonzero
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Figure 3. Displacement boundary conditions for (a) the linear elastic model and (b) the
nonlinear model with contact elements.
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loading angles (), the prescribed displacements were broken up into x and y components,
generating biaxial shear-dominated loading conditions [15].

Three different loading block geometries were considered. In Section 2 the standard
Iosipescu specimens are modeled together with the loading blocks in the biaxial (short
blocks) and modified biaxial Iosipescu (long blocks) fixtures. In Section 3.2 the effect
of another loading block geometry on the mechanical response of a flat-bottomed notch
Iosipescu specimen is discussed.

When a specimen is tested in the biaxial and ASTM standard fixtures, undesired com-
pressive stresses along the notch root axis may cause inaccuracies in the shear strength
measurement. These stresses will be reduced, but not eliminated, by using the modified
biaxial fixture design, thus allowing a more uniform shear stress state to exist along the
notch root axis of the Iosipescu specimens [4, 5, 12]. It might be possible for the compres-
sion generated by the loading blocks to be completely eliminated if the modified biaxial
Iosipescu fixture is used under shear/tension loading conditions. Searles and Kumosa [17]
and Searles et al. [20] have shown recently that introducing a biaxial state of stress coupled
with the use of the modified biaxial loading blocks entirely eliminates the oy compressive
stresses along the notch root axis for fabric composites. Thus, an attempt was made to
demonstrate the same effect for 0° unidirectional composites. Rotation of the specimen
into shear/tension might move the compressive stress fields, which are generated by the
loading blocks, away from the center of the specimen. In order to examine this prediction,
a numerical comparison between the biaxial Iosipescu loading blocks and the modified
biaxial Iosipescu loading blocks with respect to the other parameters in this article was

- performed.

For all numerical models, the loading blocks were assumed to be linear elastic and made
out of steel. The blocks have a height of 2.5 mm. The loading blocks in the original biaxial
Tosipescu fixture are 10 mm in length [7] (see Figure 4a). In the modified biaxial Iosipescu
fixture the inner and outer loading blocks are 30.9 and 25.4 mm in length, respectively [12]
(see Figure 4b). These loading blocks are very similar to the blocks recommended by the *
ASTM standard [6].

The coefficients of friction between the loading blocks and the Tosipescu specimen
are not known a priori. Moreover, the frictional properties of the specimen/loading block
interfaces may vary as a function of the applied load. Therefore, different friction coeffi-
cients were assumed. The effect of specimen sliding along the loading blocks was modeled
using two-dimensional point-to-surface contact elements with Coulomb friction assumed.
For the linear model, p=0 was assumed since the specimen and loading blocks are free
to move in the x direction [15]. For the nonlinear models with sliding and sliding with
geometric nonlinearity the coefficients of friction were = 0.0, 0.3, and 0.5. These values
were chosen due to their reasonable approximations of the possible friction coefficients
between polymer-matrix unidirectional composites and steel loading blocks.

In the analysis performed by Kumosa and Han [15], small displacement conditions (up
to 1.0 mm) were assumed for the Iosipescu specimens loaded in shear in the biaxial Iosipescu
fixture. Even though some unidirectional specimens may fail in shear at displacements below
1.0 mm [7, 9, 21], larger displacements must be considered for the specimens subjected
to biaxial loading conditions [9]. Therefore, the models used here had displacements of
0.5, 1.0, 1.5, and 2.0 mm in order to cover the entire range of displacements at failure
for unidirectional 0° Tosipescu specimens tested under shear and biaxial shear-dominated
loading conditions. These displacements were applied to both the linear elastic and the
nonlinear models with and without geometric nonlinearity. For the nonlinear models, the
total displacements were divided into 10 substeps. This decreases the error that could occur
with a single load increment in a nonlinear analysis [19].
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Figure 4. Finite-element mesh for (a) the biaxial Iosipescu specimen and (b) the modified
biaxial losipescu specimen.

§2. RESULTS AND DISCUSSION
2.1. Stresses at the center of the standard losipescu specimen

One way to monitor the effects of specimen sliding and geometric nonlinearity on
the mechanical response of Iosipescu specimens is to compute the internal stresses at the
center of the specimen. The normal and shear stresses (0, oy, and 0y,) were found for all
combinations of loading angles, coefficients of friction, displacements, and fixtures at the
midpoint of the notch root axis. The results are presented in Tables 2a, 2b, and 2c.

The numerical effects of sliding can be found by comparing the linear elastic results
with the nonlinear without geometric nonlinearity results (with . =0). When the biaxial
fixture is used, the difference for all three stress components over all four displacements is
negligible, which agrees with the results of Kumosa and Han [15]. With the modified biaxial
fixture, the difference is somewhat larger. Even though the magnitudes are relatively small,
the o, stresses are tensile when considering the linear elastic model, and compressive with
sliding assumed. For oy and o,,, the difference is smaller. The difference in the normal
stresses along x computed from the linear model and the nonlinear model with sliding only
may be due to the larger frictional forces generated with the longer loading blocks in the
modified biaxial fixture. |
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The effects of geometric nonlinearity can be determined by comparing the two nonlinear
models. In general, when specimen sliding is coupled with geometric nonlinearity, the
difference compared to the assumption of specimen sliding without geometric nonlinearity is
found to be negligible, even for relatively large displacements. Geometric nonlinearity does
not noticeably affect the stresses at the center in the 0° unidirectional Iosipescu specimens
loaded in both fixtures. This also agrees very well with the results of Ho et al. [14] and
Kumosa and Han [15].

The effects of the change in coefficient of friction on the stresses at the center for the
zero loading angle (in shear) are negligible. However, when the specimen is loaded under
either shear/tension or shear/compression, there is a significant change in the normal stress,
Oy, as the coefficient of friction increases. This may be due to the increased component
of displacement in the x direction of the loading blocks as the fixture is rotated. As this
happens, the frictional forces change in magnitude in the x direction, thus forcing o, in the
center of the specimen to be more sensitive to the coefficient of friction.

There is a very large difference in the internal stresses at the specimen center obtained
from the models with the biaxial and modified biaxial loading blocks. Clearly, the mag-
nitudes of the stresses are lower for nearly all of the combinations of loading conditions
when the modified biaxial fixture is used. More important, the ratio of oy to 0, decreases
with the use of the modified biaxial fixture (from 50-60% to 15-25%) for the same loading
conditions. However, the ratio of o, to gy, is approximately the same. By moving the com-
pressive fields caused by the loading blocks away from the test section of the specimen, the
transverse compressive stresses were reduced (as predicted by Adams and Walrath [4, 5]).

It can be seen from the results presented in Table 2b that the compressive stresses oy, do
not reduce to zero for any loading angles for a unidirectional graphite/polyimide Iosipescu
specimen loaded in the modified biaxial fixture. Obviously, the same applies to the biaxial
fixture. To examine this effect further, an additional calculation of the stresses was performed
with p=0.3, ¥ =2.0 mm, and oc=40° (shear/tension). The stresses are o, =21.7 MPa,
0y = ~24.4 MPa, and 0,y = —158.3 MPa. Even for this large loading angle, the compressive
stress is significant. Therefore, it is not possible to improve the quality of the shear stress
field by significantly reducing the compressive stresses at the center of the 0° unidirectional
specimen with the current test fixtures and the standard Iosipescu specimen geometry. In
order to achieve this, additional modifications to the Iosipescu test are required. This will
be discussed further in Section 3.2.

2.2. Stresses near the notch root of the standard losipescu specimen

The stress components gy and 0y, must be zero at the free edge of the notch root,
where the slope of the radius is zero in the x—y plane. Numerically, the stresses only come
close to zero, due to the difficulty of placing a node (on which the forces are calculated) as
close as possible to the very bottom of the notch root radius. It was found that o, and oy,
are significantly large very close to (but not on) the notch root. The three components of
stress were calculated approximately 0.002 mm away from the notch root along the notch
root axis (Tables 3a, 3b, and 3c¢). Clearly, these stresses are not equal to the stresses at the
center of the specimen, therefore a uniform state of stress does not exist along the test section
of the specimen, which is not surprising. This has been shown by many researchers in the
past (e.g., [7]) by performing linear elastic finite-element computations of the Iosipescu
shear test.

It can be clearly seen that the assumption of sliding between the specimen and the load-
ing blocks affects the stresses near the notch root significantly. Only oy, and o, generated
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with the modified biaxial fixture show little deviation from the stresses calculated with the
linear-elastic assumption. The effect of geometric nonlinearity also has a large influence on
all o, and oy, stresses. The stresses are in general more sensitive to changes of the loading
conditions near the notch root than in the center of the specimens, and this applies to both
fixtures. Therefore, when calculating the stresses near the notch root for the 0° unidirectional
Tosipescu specimens loaded either in shear or biaxial conditions, the assumption of sliding
with geometric nonlinearity must be made in order to avoid large numerical inaccuracies.
Based on this very important observation, it can be said that all the previous published data
regarding the stress distributions near the notches of the 0° Iosipescu specimens obtained
from the linear elastic models are incorrect.

The effects of changing the coefficient of friction between the loading blocks and the
specimen has little significance on the stresses except on o, when the coefficient is adjusted
from 0.0 to 0.3 in both fixtures. Again, as in the case of o, in the center of the specimen,
the differences may be due to the resulting frictional forces on the specimen that act in
the x direction. The magnitude of the frictional forces vary with the coefficient of friction
and rotation. Since it was previously shown that the consideration of sliding is important
near the notch root, care should be taken in choosing the friction coefficient for numerical
analyses if it is below 0.3.

As is the case with the stresses at the center of the specimen, the stresses near the notch
root are strongly influenced by the loading block geometry. The magnitude of nearly all
of the stresses is lower when the modified biaxial fixture is used over the biaxial geometry.
Also, the ratio of oy to 0, decreases in most cases, and the ratio of o to oy is approximately
the same. As the compressive fields move away from the notch root axis, which is the case
of the modified fixture, the transverse compressive stresses are reduced near the notch
root.

From the results of the stresses at the center of the specimen and near the notch root,
it is clear that for all of the combinations of loading conditions there does not exist a
uniform state of shear stress along the notch root axis and the transverse compressive stress
is nonzero in the test section of the specimen. Introducing various applied states of biaxial
loading conditions (shear/tension and shear/compression) does not give the desired stress
state in the test section of the unidirectional specimens. It can be therefore speculated that the
presence of the compressive stresses in the gauge section of the specimen will affect modes
of failure for unidirectional graphite/polyimide and graphite/epoxy composites. Moreover,
the proper evaluation of the shear strengths of the composites will be possible only if a
multiaxial failure criterion is used. ‘

2.3. Numerical load/displacement diagrams

Numerical load/displacement diagrams were generated for the graphite/polyimide uni-
directional composite specimens. As an example, the load/displacement diagrams for a zero
loading angle and a coefficient of friction of 0.3 are shown in Figures 5 and 6 for the biaxial
and modified biaxial fixtures, respectively. The loads were calculated by taking the sum of
the reaction forces on the right side of the specimen (as in [15]), thus modeling the load
read by a load cell in a mechanical testing machine.

The load/displacement curve for a specimen tested in the biaxial fixture shows an
insignificant variation in response for the three assumptions of loading conditions, even at
relatively high displacements. This agrees closely with the results of Kumosa and Han [15]
(considering that they used different materials). For a specimen tested in the modified biaxial
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Figure5. Numerical load-displacement curve of a specimen in the biaxial Iosipescu fixture.

fixture, the results are quite different. There is a significant reduction in the slopes of the
curves when specimen sliding is assumed. The assumption of geometric nonlinearity lessens
the loads further, but is significant only atlarge deformations. Therefore, the effects of sliding
and geometric nonlinearity on the load/displacement curves will be more pronounced if the

composite is tested in the modified biaxial fixture or the fixture
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§3. MODIFICATION TO THE IOSIPESCU SHEAR TEST
3.1. Failure criterion

It was demonstrated in the previous section that the stress distribution is nonuniform
throughout the test section of Iosipescu specimens loaded with the biaxial and modified
biaxial fixtures at various loading angles and using various assumptions of nonlinearity.
Moreover, for all of the above loading conditions, a state of pure shear does not exist, either
at the notch root or at the center of the specimens. Therefore, unidirectional glass/epoxy,
graphite/polyimide, and graphite/epoxy composites with the fibers parallel to the long axis of
the specimen tested in the standard Iosipescu fixture, biaxial fixture, and modified biaxial
fixture will always be subjected to biaxial stresses with significant normal longitudinal
and transverse stresses present. Furthermore, the presence of large transverse compressive
stresses (in some cases) in the gauge section of the specimens will prevent the proper shear
failure analysis of the composites. It can be assumed that the normal stresses along the fibers
should not affect the modes of failure for the composites considered, since the longitudinal
strengths of unidirectional composites are significantly higher than the transverse and shear
strength properties. The ASTM standard [6] clearly stipulates that for a unidirectional
0° composite, the splits that are always formed at the roots of the notches should not be
considered as the shear failure. The problem s that any type of shear failure (either individual
intralaminar cracks [21] or interlaminar “shear” damage zones [22]) will be affected by the
transverse compressive stresses in the test section.

The Tsai-Wu quadratic failure criterion may be used to approximate the failure envelope
of unidirectional composites [23, 24]. Peirron and Vautrin initially suggested applying the
Tsai-Wu criterion to Iosipescu specimens [25]. The criterion is described by

Fe 02 + Foop + Fyy03 + Fy0y + Fey0,0y + Fye02 = 1 (1)

X and X' are the strengths in tension and compression, respectively, along the fiber direc-
tion, and Y and Y’ are the strengths perpendicular to the fiber direction. S is the in-plane
(intralaminar) shear strength. The coefficients of (1) may be expresses as

1 1
Fe=x% P=vp
1 1 1 -1
=—— — = — - — 2
T X X YTy v 2)
1 . F

52 P IXXYY

where F, :‘y is the interaction term and is often assumed to be —0.5, as is the case here. The
approximate strength values for glass/epoxy and graphite/polyimide composites are given
in Table 4. The properties for the unidirectional graphite/polyimide composite are similar
to the strength properties of a unidirectional graphite/epoxy composite.

It can be easily shown that the stress fields near the roots of the notches of the specimens
subjected to all of the loading conditions considered in Section 2 cause the failure criterion to
be exceeded long before the criterion is satisfied at the center of the specimen, even for small
displacements (0.5 to 1.0 mm). Therefore, a redesign of the fixtures to minimize the shear
stress concentrations and the presence of the compressive stresses near the notches would
be highly beneficial. If the transverse compressive stress was reduced to zero uniformly
over the notch root axis, then the failure criterion will not be necessary to extrapolate the
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Table 4
Failure properties of graphite/polyimide and
glass/epoxy composite systems (in MPa) for
use with the Tsai-Wu failure criterion

Unidirectional Unidirectional
Graphite/Polyimide Glass/Epoxy

X 1,300 800
bd 900 700
Y 40 35
Y’ 180 120
S 80 60

shear strength from the loads associated with any type of damage generated in the gauge
section (following the recommendations provided by the ASTM standard [6]). Since the
normal stresses along the fibers (o, ) will contribute a negligible amount to the composite
failure in shear, their absence in the test section is not critical. It will be shown in the next
section that by modifying the specimen geometry significantly and employing shear/tension

loading conditions, the best-quality shear stress fields can be generated in the 0° Josipescu
specimens.

3.2. Modifications to the losipescu shear test

An iterative process was used to find a combination of loading angles, loading block
geometries, and specimen geometries that would produce shear failure, preferably at the
center of the unidirectional Iosipescu specimen, and reduce the transverse compressive
stress uniformly along the notch root axis to nearly zero. As a starting point, an optimized
specimen, based on the flat-bottomed notch specimen design of Adams and Lewis [18],
was used in order to eliminate the two characteristic splits that occur in 0° unidirectional
Tosipescu specimens. These splits are due to transverse tension near the notch roots, as
investigated by many authors [26-28]. This also creates a more uniform stress field along
the notch root, which can be easily shown with the finite-element method [18,22]. Therefore,
by eliminating the axial splitting in the Iosipescu specimens, more uniform (but still biaxial)
stress conditions can be generated in the specimen gauge section. The flat-bottom specimen
was investigated with 2-mm, 4-mm (as suggested by Adams and Lewis [18]), and 6-mm
notch depths.

Rotation of the standard Iosipescu specimen into shear/tension, as shown previously,
reduces the transverse compressive stresses in the test section of the specimen. However,
this in turn increases the normal stress along the fibers. It was observed in this study that
increasing the distance between the inner loading blocks and the center of the specimen,
while keeping them flush with the ends of the specimen, and decreasing the notch depth,

also decreases the transverse compressive stresses relative to the normal stresses along the-

fibers and shear stresses. Maintaining a notch root radius of at least 1 mm helps minimize
the o, stress concentration at the notch roots.

The optimized Iosipescu test consists of loading blocks that are 22.5 mm long (top and
bottom). The notch root angle is 90°, the notch depth is 2 mm, and the notch root radius is
1 mm (Figure 7). The specimen is 80 mm in length and 20 mm in width. The length of the
flat-bottomed notches is 10 mm. The specimen is loaded in shear/tension (45°).
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Figure 7. Optimized losipescu test specimen and loading block geometry (dimensions in
mm). : , .

A finite-element model of the above specimen (see Figure 8) was generated (with
1 =0.3 and geometric nonlinearity). The stress distributions along the notch root axis in the
standard Iosipescu specimen loaded in shear are presented in Figure 9 for comparison with
the stresses determined from the optimized test (Figure 10). Obviously, the stresses in the
gauge section are not uniform with large stress concentrations present near the notches (see
Figure 9). It can be seen that the stress fields along the notch root axis in the optimized test
are completely different (see Figure 10). It should be noted that the transverse compressive
stresses in the optimized test are nearly zero along the notch root axis. Moreover, there is
no shear stress concentration at the notches, with the shear stress reaching its maximum at
the specimen center.

Plots of the failure envelopes (following the Tsai-Wu failure criterion) along the notch
root axis for the standard and optimized tests are shown inFigures 11 and 12, respectively, for
the material strengths listed in Table 4 (unidirectional graphite/polyimide). The envelopes
presented in Figures 11 and 12 represent three different stress fields. One was obtained
from the exact stresses along the notch root axis from the standard shear and optimized
tests, whereas the other two were generated with o, set equal to zero and o, and o, set
equal to zero in order to determine the influence of the normal stresses on the failure of the
specimens. Figure 12 clearly indicates that in the optimized test the shear failure should
occur near the center of the specimen where the shear stress is maximized and the normal
stresses are minimized. There is a negligible effect of normal stresses on the shear failure

| 1] <] | | AN EEN
N 1/

[T 11T | TI11ITT

Modified long loading blocks

Figure 8. Optimized losipescu test specimen finite-element model mesh.
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Figure 9. Stresses along the notch root axis of the standard losipescu test specimen under
a 0.5-mm fixture displacement.

process. Figure 11 shows that in the standard test the failure will occur near the notch roots.
Also, there is a greater effect of oy on the failure process at the center of the specimen. In
both cases, there is no influence of the normal stresses along the fibers. Most important, the
optimized Iosipescu test generates a stress field in unidirectional composites that should
cause failure to occur due to shear stresses only, and the failure should occur at the center
of the specimen. Therefore, by modifying the specimen geometry and the loading blocks
significantly and rotating the specimen toward large shear/tension loading angles, the best-
quality shear stress fields can be generated.
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Figure 10. Stresses along the notch root axis of the optimized losipescu test specimen under
a 2.5-mm fixture displacement.
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Figure 11. Tsai-Wu failure envelope along the notch root axis of the standard losipescu
test specimen under a 0.5-mm fixture displacement.

In summary, the optimized “shear” test can be characterized by the following:

1. Failure of 0° unidirectional composites should occur at the specimen center.

2. Failure at the center will be due to shear only. '

3. There will be no axial splitting due to transverse tension at the notch root.

4. The shear strength of the composites can be determined from the first load drop on
the load/displacement curve associated with the onset of intralaminar shear damage
in the gauge section of the specimen, provided the localized crushing near the loading

blocks is prevented.

12
o AT TN
0.8 / \‘&

A\

Failure envelope
o
D

——specimen
04 ——sigmay = 0
...... sigma X, y= 0
0.2
0
0 2 4 6 8 10 12
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Figure 12. Tsai-Wu failure envelope along the notch root axis of the optimized losipescu
test specimen under a 2.5-mm fixture displacement.
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Figure 13. Tsai-Wu failure envelope along the notch root axis of the optimized Iosipescu
specimen with a notch depth of 4.0 mm under a 2.5-mm fixture displacement.

In the flat-bottom Iesipescu specimens suggested by Adams and Lewis, the notch
depth was assumed to be 4 mm. However, the above computations were performed for the
specimen with 2-mm notches. The importance of reducing the notch depth in the optimized
“shear” test to 2 mm will now be demonstrated. The failure envelopes for the optimized -

test, but with a notch depth of 4 mm, is shown in Figure 13. It can be clearly seen, by

comparing Figures 12 and 13, that the effect of the transverse compressive stress along the
notch root axis in the 4-mm notch specimen is significant, and a failure criterion must be
used to extract the true shear strength unless the notch depth is reduced to 2 mm.

The preceding analysis was performed on graphite/polyimide unidirectional compos-
ites. In order to examine the effect of the orthotropy ratio on the stress distributions in
the optimized Iosipescu specimens, the same analysis was performed on a glass/epoxy
unidirectional composite, which has a much lower orthotropy ratio (strength properties
may be found in Table 4). The stresses and failure envelopes using the optimized test are
shown in Figures 14 and 15, respectively. Clearly, the optimized test should work just as
well for glass/epoxy composites, with orthotropy ratio 51gn1ﬁcantly lower than that of the

* unidirectional graphite/polyimide.

In order to match the shear stresses determined experimentally (the shear component
of load on the fixture divided by the cross-sectional area of the specimen) with the actual
shear stress in the specimen at failure, a correction factor must be used. This is due to the
nonuniform shear stresses along the notch root axis. The ratio of the average shear stress to
the shear stress at the center of the specimen is 57.0% for graphite/polyimide and 59.0%
for glass/epoxy. The ratio for any 0° unidirectional polymer—matrix composite should be
very close to these values.

§4. EXPERIMENTAL VERIFICATION

It has been shown in this article that the Iosipescu shear test can be optimized to
eliminate almost entirely the presence of transverse compressive stresses in the gauge
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Figure 14. Stresses along the notch root axis of a glass/epoxy optimized losipescu test
specimen under a 2.5-mm fixture displacement.

section of unidirectional Iosipescu specimens and at the same time prevent axial splitting.
However, the nonlinear finite element results of internal stress distributions in the specimens
did not take into consideration two very important factors: the effect of local crushing of
the specimens underneath the inner loading blocks and the nonlinear material behavior.
The effect of material nonlinearity on the stresses in unidirectional Iosipescu specimens
will be discussed in a subsequent article [29]. Since the numerical results presented in this
article look very promising, an attempt was made to verify the numerical work presented
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Figure 15. Tsai-Wu failure envelope along the notch root axis of a glass/epoxy optimized
Iosipescu test specimen under a 2.5-mm fixture displacement.
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above experimentally. In particular, the effect of specimen crushing on the intralaminar _
failure process in a unidirectional glass/epoxy Iosipescu specimens was investigated.

Four Iosipescu specimen geometries were tested in order to determine experimentally
the proper specimen geometry for initiating intralaminar damage in the gauge section.
The specimens were 0° unidirectional E-glass/epoxy with the volume fraction of fibers
approximately 0.55 (per volume). Since unidirectional glass fiber/epoxy composites are
transparent materials, the initiation and development of intralaminar damage in the speci-
men gauge sections and crushing underneath the loading blocks could be easily monitored
optically (unlike in unidirectional graphite fiber composites). The loading blocks used in
these tests had rounded corners to reduce the stress concentrations in the specimens at the
loading block—specimen interfaces.

The first set of specimens (three specimens) had the standard ASTM geometry tested
with the long loading blocks in shear. The load-displacement diagrams obtained from these
tests exhibited the typical features associated with this type of testing, e.g., load drops
caused by the axial splitting and the nonlinear behavior at higher loads. The intralaminar
damage in the gauge section, reported in [22] and [26], never occurred, since the specimens
developed significant crushing underneath the loading blocks at loads very close to the
loads for the onset of splitting. The nonlinear behavior of the load—displacement curves
was associated with the rapid development of the crush zones at the inner loading blocks.
Therefore, this geometry clearly cannot be used to determine the strength of the composite
without considering the effect of crushing at loading blocks on the failure process.

. Inthe next set of experiments three flat-bottom losipescu specimens with 4-mm notches
(as recommended by Adams and Lewis [18]) were tested in shear. In this case, the specimen
geometry prevented the axial splitting along the fibers. However, similar to the previous
experiments, the three specimens developed significant crushing before any intralaminar
cracking in the gauge section occurred. Again, the observed significant nonlinear behavior of
the load—displacement curves at higher loads could be attributed primarily to the significant
crushing of the composite at the inner loading blocks. Therefore, this geometry cannot be
recommended for the shear strength characterization of unidirectional composites without
considering the effect of crushing on the intralaminar failure process in the gauge section.

It has been shown in Section 3.2 that the flat-bottom Iosipescu specimen with 2-mm
notches exhibits the highest-quality shear stress field in the gauge section when loaded
under shear/tension with the transverse compressive stresses almost entirely eliminated.
According to the numerical predictions, this specimen should fail in the middle of the test
section, and the failure should be due to shear only. Two specimens were tested, and both
behaved the same way. Significant crushing of the composite underneath of the loading
blocks developed before any intralaminar failure could be observed in the gauge section.
Despite the presence of a pure shear stress field in the test section of the specimen, this
geometry cannot be recommended for the shear strength characterization of unidirectional
composites. »

Since the optimized Iosipescu specimens with 2-mm and 4-mm notches developed sig-
nificant crushing before any visible intralaminar damage along the notch root axis could be
detected, the flat-bottom Tosipescu specimens with 6-mm notches were tested. It was hoped
that by reducing the test-section area, the stresses in the gauge section could be increased
relative to the compressive stresses at the loading blocks. In all three trials, intralaminar
damage in the gauge section and crushing were initiated simultaneously. Furthermore,
the damage in the center propagated from the notch root at the center of the specimen
within seconds. The simultaneous development of the intralaminar damage and crushing
associated with the onset of significant nonlinearity of the load-displacement curve. The
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Figure 16. Experimental load-displacement curve for glass/epoxy flat-bottomed losipescu
specimen with 6-mm notches.

load—displacement diagram and the flat-bottom specimen tested are presented in Figure 16.
The stress distributions along the notch root axis in the Iosipescu specimen with 6-mm
notches and the failure envelopes are shown in Figures 17 and 18, respectively. It can be
seen that for this specimen geometry the stress field in the gauge section is biaxial, with a
large contribution of normal stresses. The shear strength of the composite was subsequently
obtained using the multiaxial failure criterion and was found to be 105 MPa (at the center
of the specimen). However, the failure most likely did not initiate at the specimen center.
Similar shear stress distributions, with the maximum shear at the specimen center, have been
found for the standard losipescu specimens with the 90° fiber orientation tested in shear
[22]. For this fiber orientation the initiation of specimen failure was also observed at the
notch root, despite the fact the shear stress was maximum at the specimen center. Therefore,
there is an obvious discrepancy between the numerical predictions and the actual failure
mode in the flat-bottom specimen with 6-mm notches. Most likely the nonlinear material
behavior, neglected in this research, will make the shear stress field along the notch root
axis less concentrated and more uniform. Therefore, the obtained shear strength of the com-
posite determined based on the linear elastic computations is significantly overestimated.
This could be another example of the incorrect application of linear elastic finite element
models for the failure analysis of composite materials tested in the Josipescu shear test. The
effect of material nonlinearity on the failure process in unidirectional Iosipescu specimens
will be discussed in another article [29].

In graphite/polymer unidirectional Iosipescu specimens, crushing at the loading blocks
cannot be easily observed since those materials are not transparent. Therefore, the effect of
crushing on the shear strength measurements of the composites has been often neglected. It
can be assumed that even if cracks on the specimeh surface underneath the loading blocks
are not observed, significant material crushing can still occur inside the specimen. However,
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Figure 17. Stresses along the notch root axis of a glass/epoxy ﬂdt-bottomed Iosipescu
specimen with 6-mm notches under a 1.0-mm fixture displacement.

this type of damage cannot be detected optically in unidirectional graphite/polyimide and
graphite/epoxy specimens. In the experiments performed in this study, significant damage
was detected in the specimens underneath the inner loading blocks long before any surface
cracks could be detected along the specimen edges. Therefore, any assumptions about
the presence (or lack thereof) of crushing made based purely on optical observation of the
specimen edges underneath the loading blocks is invalid. Both material nonlinearity and

4.5
4 —
3.5 _7/;:/ ~ =
. R /:;/ N
2.
o
2 25
g 2
2
E 15 . -—specimen
’ —sigmay=0
9. ..,...sfgma xy=0
0.5
0
0 1 2 3 4 5 6 7 8

Notch root axis [mm]

Figure 18. Tsai-Wu failure envelope along the notch root axis of a glass/epoxy flat-bottomed
losipescu specimen with 6-mm notches under a 1.0-mm fixture displacement.
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the local crushing at the loading blocks must affect the stress distributions in unidirectional
0° Iosipescu specimens at failure, and at the same time, the shear strength determination.

It has been shown in this research that even if the specimen geometry is optimized
in order to eliminate undesirable normal stresses in the gauge section, crushing of the
specimens at the inner loading blocks can create severe experimental difficulties, leading
to the incorrect interpretation of experimental results obtained from the Iosipescu tests.
Obviously, the effect of crushing on the failure process in the Iosipescu specimens will be
significantly more pronounced if the specimens are tested with the short loading blocks.
In this case, the concentration of the compressive stresses in the specimens underneath
the loading blocks is significantly higher in comparison with the long blocks used in the
experimental part of this research.

§5. CONCLUSION

The effects of specimen sliding and geometric nonlinearity on the mechanical response
of 0° unidirectional graphite/polyimide standard Iosipescu specimens subjected to the bi-
axial shear-dominated loading conditions in the biaxial and modified biaxial fixtures have
been investigated using nonlinear finite element methods. It has been shown that the effects
of sliding are small, in some cases negligible, and the effects of geometric nonlinearity are
always negligible for stresses at the center of the standard Iosipescu specimen tested up to
2 mm. The stresses near the notch root change significantly for both assumptions of non-
linearity. Variations in the coefficient of friction in some cases have a significant influence
on o, but have very little effect on o, and oy, in the center of the specimen and near the
notch roots. The use of the modified biaxial loading blocks over the biaxial loading blocks
has the same effect on all of the stresses along the notch root. The magnitude of all of the
stresses decreases, and the ratio of ¢, to oy, decreases.

Neither set of loading blocks under the investigated conditions can induce failure due
to shear only in the standard Iosipescu specimen, even if the specimen is rotated within the
biaxial fixture. The optimized Iosipescu test, the flat-bottom specimen with 2-mm notches,
might eliminate this problem by forcing the specimen to fail due to shear stresses only at
the center of the specimen. Also, the optimized specimen eliminates characteristic axial
splitting initiating at the notch roots and associated load drops on the load-displacement
curves. However, for this specimen geometry, local crushing at the loading blocks affects the
intralaminar failure process in the gauge section in the shear strength determination. Only
in the flat-bottom Josipescu specimen with 6-mm notches crushing occurs simultaneously
with the rapid development of intralaminar damage along the notch root axis. In this case,
however, the stress field in the gauge section is biaxial. :
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ABSTRACT: The biaxial and modified biaxial losipescu shear test methods were applied
to determine the shear dominated, biaxial mechanical response of graphite/PMR-15 and
graphite/Avimid-R woven fabric composites at room and elevated temperatures. Three dif-
ferent composite architectures were examined: T650-35 warp-aligned, 8-hamess satin
(8HS) fabric in a PMR-15 matrix, T650-35 warp-aligned, 8HS fabric in an Avimid-R ma-
trix and T650-35 0°/90°, 8HS fabric in an Avimid-R matrix. Several biaxial losipescu tests
were performed at room temperature under shear, shear-tension, and shear-compression
loading conditions to characterize damage and obtain biaxial, shear dominated failure
properties. Shear tests were also conducted at elevated temperatures approaching 316°C to
determine the effects of temperature on the shear strengths of the composites investigated.
A nonlinear finite element analysis is briefly introduced to evaluate the effects of specimen
sliding and geometric nonlinearities on the stress and strain distributions in the biaxial
Tosipescu specimens. In addition, the effects of different loading block geometries on the
stress distribution in the losipescu specimens subjected to biaxial loads were also investi-
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gated. Within this investigation, it was found that graphite/Avimid-R was more resistant to
biaxial, shear dominated failure at room temperature in comparison to graphite/PMR-15.
However, the graphite/PMR-15 composite system exhibited better shear strength proper-
ties at elevated temperatures above 232°C. It was also found that the effect of compression
along the notch root axis generated by the loading blocks did not affect the loads at failure.

INTRODUCTION

IGH TEMPERATURE POLYMERS and polymer matrix composites (PMC’s) are

finding increasing use in the aerospace and electronics industries. At the
present time, PMC’s account for about 4% by weight of commercial aircraft and
about 10% of military aircraft. Current predictions are that, within the next decade,
up to 65% of new commercial and military aircraft could be polymer composites.
Advanced thermosetting polymer composites such as cloth based, graphite rein-
forced polyimides, have become highly relevant in the realm of reduced weight at
high temperature applications [1]. These composites possess exceptional specific
properties, are stableé to temperatures as high as 360°C and effectively translate
stiff, strong yarns into stiff, strong composites. The 8H woven architecture also ex-
hibits good conformability (drape) over complex surfaces. However,
conformability and resistance to shear and shear dominated, biaxial in-plane load-
ing conditions tend to be inversely related.

For successful application of graphite/polyimide composites, it is essential to
have areliable database of material properties and a comprehensive understanding
of fracture and failure behavior, especially at elevated temperatures. A major limi-
tation of many fiber-polymer composite systems is the inability of these materials
to resist intralaminar and interlaminar damage initiation and propagation under bi-
axial, shear dominated in-plane monotonic and cyclic loading conditions. The pri-
mary purpose of this research is to experimentally investigate the in-plane shear
and biaxial response of 8HS woven graphite/polyimides as a function of tempera-
ture and characterize the damage development through novel application of image
analysis techniques. Secondly, this research addresses the effects of specimen slid-
ing, geometric nonlinearities and the geometry of the loading blocks on the stress
distributions in the graphite/polyimide Iosipescu specimens tested in the biaxial
and modified biaxial losipescu fixtures.

EXPERIMENTAL MECHANICS OF WOVEN FABRICS

From an experimental viewpoint, uniaxial tensile and compressive properties of
advanced woven composites may be readily obtained by employing standardized
tests such as unnotched tension or compression tests. In most cases, interpretation
is straightforward and the values obtained are fairly accurate with minimal data
scattering. There are, of course, exceptions subject to interpretation as in cases in-
volving grip failures and slippage, buckling or crushing. Conversely, obtaining ac-
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curate information on in-plane shear behavior can be quite complicated and cum-
bersome. Interpretation of material response to shear dominated, biaxial loading
conditions at elevated temperatures can prove to be even more difficult.

A great deal of time, effort and understanding have been invested to establish
the guidelines and best known methods (BKM’s) for conducting shear tests on
polymer matrix composite materials. Currently, there are only a few tests available
for the shear characterization of these materials. The most commonly applied test-
ing methods include the two and three-rail test, cross-beam sandwich test, picture
frame panel test, thin-walled torsion tube test, 10° off-axis test, £45° off-axis ten-
sile test, slotted tensile test and the losipescu test. In several of these tests,
end-constraint effects, buckling and bending moments introduce errors in the
measured elastic properties. Of these tests, the losipescu method is most likely the
best and least expensive available test.

Josipescu Testing of Fabrics

The losipescu shear test, which was originally intended for determining shear
properties of metals [2], was first applied to composite materials by Walrath and
Adams [3-5]. With the efforts of Adams, Walrath and Slepetz et al. [6] the
Tosipescu specimen geometry and loading have been certified through extensive
investigations and finite element analysis. Based upon those. investigations and
more comprehensive studies 7] that include the analysis of stress distributions in
the specimen as a function of geometry, a redesigned test specimen and fixture
emerged from the University of Wyoming. The fixture was aptly named the modi-
fied Wyoming fixture. :

Comparative studies have been made between isotropic and orthotropic materi-
als to determine the questionable influences of geometry, loading configuration
and fiber direction on the stress distribution in the specimen gage section and to
understand why the shear stress field is not uniform as originally proposed by
Tosipescu [2]. However, very little work has been done to further the understand-
ing of the aforementioned influences on shear response of fabric composites, espe-
cially as a function of temperature. The major focus has been on applying uniax-
ial/biaxial extension and compression or off-axis tensile testing to these materials
under room temperature conditions [8—11]. As exceptions, Ho et al. [12) used the
Tosipescu shear test method to evaluate the in-plane shear response of AS4 and
Celion carbon fiber-epoxy fabric composite materials. Woven architecture influ-
ences and materials response were quantified using conventional strain gages and
Moiré interferometry. Walsh and Ochoa [13] applied the losipescu shear test to
plain woven hybrid S-RIM composites for comparison of elastic constants pre-
dicted by original mathematical mechanics models. Ifju [14-15] abandoned the
traditional Iosipescu specimen geometry altogether, opting for a compact version
with u-shaped notches and a larger gage section. This combined with a newly de-
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signed shear gage [16] and Moiré interferometry was shown to provide less exper-
imental scatter for shear properties of woven fabric composites.

Biaxial and Modified Biaxial Fabric Testing

In most engineering applications, composite systems are not subjected to sim-
ple states of stress, but to biaxial and triaxial loads. Only a limited few of the previ-
ously mentioned test methods can extend to include these loading conditions. The
modified Wyoming fixture is fixed and does not allow for external loading appli-
cations other than parallel to the notch root axis. Therefore, exploration of unre-
solved issues pertaining to the influence of normal and transverse stress compo-
nents on the shear stress distribution is not possible. As a result of this problem,
lengthy studies have been conducted by Broughton, Kumosa and Hull [17-19] to-
wards the development of a more refined biaxial fixture.

The biaxial losipescu test fixture allows for rotation of the externally applied
loads with respect to the notch root axis and is capable of measuring biaxial,
shear dominated material failure properties. It has been used for measuring
mixed-mode failure properties of unidirectional carbon/epoxy, glass/polymer,
carbon/PEEK, Ti/SiC and Teak wood [20-22]. The biaxial losipescu test tech-
nique is being proposed in this investigation as a successful experimental too! for
evaluating the shear dominated biaxial response of 8HS woven graph-
ite/polyimides at room and elevated temperatures. Also proposed herein is a
modified version of this fixture that loads the specimen similar to the modified

Wyoming design and allows the reduction of transverse stresses generated by the
loading blocks. '

Loading Contact and Geometric Nonlinearities

Itis well known that the in-plane shear response of most unidirectional compos-
ite materials is highly nonlinear, primarily due to yielding of a dominant matrix.
For brittle matrix fabric composites, such as the graphite/polyimides studied
herein, we may expect some yielding in the resin rich crimp pockets, but the re-
sponse should be more linear or bilinear until failure because of the different
microstructures of the fabric composites in comparison with unidirectional com-
posites. At elevated temperatures, the degree of nonlinearity exhibited should in-
crease as the matrix glass transition temperature is approached. However, at room
temperature it is possible that any observed deviation from linearity during an
Tosipescu test could be partially contributed to specimen-fixture contact
nonlinearities (sliding) and geometric nonlinearities. Previously, Ho et al. [23]
found these conditions not to be of significance in the shear testing of brittle matrix
graphite/epoxy unidirectional composites using the modified Wyoming fixture.
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The investigation performed by Ho et al. [23] concentrated, however, on the effect
of sliding and geometric nonlinearity on the stress distributions in unidirectional
graphite/epoxy losipescu specimens subjected to relatively small deformations.
Since graphite/polyimide fabric Iosipescu specimens tested under biaxial, shear
dominated loading conditions fail at large applied displacements [24-25], these
non-linear effects must be further investigated.

A preliminary numerical analysis from an ongoing study, supplemental to the
experimental investigation of the biaxial failure properties, will be introduced to
show the effects of contact and geometric nonlinearities on stress and strain dis-
tributions in a graphite-polyimide losipescu specimen. What is of interest is the
influence of large biaxial deformations and varying contact conditions between
the specimen and the loading blocks. A comparison will be made between the bi-
axial Iosipescu fixture with contact lengths of 10 mm and the modified biaxial
Tosipescu fixture with long and short contact lengths of 31.1 mm and 25.4 mm,
respectively. Although the friction coefficients at the loading block/specimen in-

terface are not known a priori, a reasonable value of 0.3 is assumed in this analy-
sis, since simple inclined sliding experiments produce rough approximations in
the range of 0.2 to 0.4, ‘

COMPOSITE MATERIAL ARCHITECTURES

In the experimental part of this study, three different composite systems based
on woven graphite fabrics were tested. The graphite/PMR-15 composite plaques
were fabricated at the NASA Lewis Research Center per the following specifica-
tions:

Fabric:T650-35, 8-harness satin cloth (V= 58-60% nominal)

Ply Arrangement: warp-aligned, 16-ply with floating undulations (crimps)
Matrix: PMR-15 (polymerization of monomer reactants, At. wt. = 1500)
Cure: simulated autoclave and postcure (General Electric specifications)
Q/A: C-scan (exceptional density, uniformity)

Dimensions: 305 mm X 305 mm X (4.82—5.15 mm)

Two slightly different graphite/PMR-15 plaques (same ply orientation) were sup-
plied by the NASA Lewis Research Center; one plaque was 4.82 mm thick and the
other plaque was 5.15 mm thick. Two graphite/Avimid-R systems with different
ply orientations were also submitted by Pratt & Whitney. These plaques were fab-
ricated at DuPont per the following specifications:

Fabric: T650-35, 8-harness satin cloth (V= 58—-60% nominal)

Ply Arrangement: warp-aligned orientation with 10-plies

Matrix: Avimid-R (proprietary combination of dianhydride-diamine mono-
mers)

indent lem
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Cure: simulated autoclave and postcure (specifications unknown)
Q/A: C-scan (exceptiona! density, uniformity)
Dimensions: 305 mm X 305 mm X 3.92 mm

Fabric: T650-35, 8-harness satin cloth (V= 58-60% nominal)

Ply Arrangement: 0°/90° orientation with 10-plies

Matrix: Avimid-R (combination of dianhydride-diamine monomers)
Cure: simulated autoclave and postcure (specifications unknown)
Q/A: C-scan (exceptional density, uniformity)

Dimensions: 305 mm X 305 mm X 3.92 mm

Approximately 55 losipescu specimens were processed from the 2 graph-
ite/PMR-15 plaques and 25 specimens from each of the graphite/Avimid-R
plaques. All of the specimens were selectively cut and the material inside the
C-scanned edge effect boundary was examined for uniformity before being used.
Each specimen blank was cut with a diamond-tipped blade and included a2 mm al-
lowable tolerance on all sides. The blanks were subsequently surface ground to fi-
nal dimensions and the notches were machined to the desired depth using a grind-
ing wheel dressed in the form of a v-notch with an included 90° angle (Figure 1).
Special precautions were taken during the critical step of machining the notches
and all operations were performed under a copious flow of water. Post-machining

"as received"

4 mm w/ 90 deg. included angle and a
0.45 mm notch root radius

Figure 1. losipescu specimen geometry.
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requirements included immediate specimen drying to reduce moisture absorption
by the matrix and examination of machined surfaces with an optical stereoscope.
In all instances, no visible damage due to machining was detected. The notch root
radii of the specimens were consistently 0.45 mm.

MECHANICAL TESTING PROCEDURE

The biaxial Iosipescu test fixture employed in this study is shown in Figure 2
and has the capabilities to test composite materials in shear and combined
shear-tension or shear-compression. The specimen may be rotated correspond-
ing to a changing loading angle () ranging from (+40°) shear-compression to
(~40°) shear-tension. Four 10 mm X 10 mm stainless steel loading blocks (in the
original design of the fixture) can be adjusted to accommodate specimens as thin
as 1 mm and the position of these blocks, with respect to the notch root axis, may be
changed for various notch geometries. The modified version of the biaxial fixture
employs significantly longer blocks with geometries similar to the modified Wyo-
ming design and the ASTM standard (D5379/D5379M-93, Standard Test Method
for Shear Properties of Composite Materials by the V-Notched Beam Method).
For this study, a screw-driven Dillon Test System with a planetary gearbox and a
45 kN load capacity was used as the mechanical testing platform. An environmen-
tal chamber capable of sustaining temperatures in excess of 343°C was also incor-
porated into the platform. The entire system was calibrated with reference to a
given monotonic compressive load ata constant displacementrate of 1.5 mm/min.

The assemblage of data acquisition components necessary for recording dy-

namic mechanical test data is shown schematically in Figure 3. The analog load .

signal (1 Vdc full scale), sensed as strain by the 45 kN load cell, was routed toaDC
amplifier and raised by an order of magnitude to compliment the Measurements
Group Model 2000 A/D converter range of 10 Vdc. Measurements Group MG
2000 and National Instruments IEEE-488 GPIB software were utilized to interpret
the incoming signals (channels) and dynamically display them, allowing for the
capture of experimental data points. Displacements were measured with a New-
port displacement transducer and the ambient lab temperature was measured using
a Type-K thermocouple.

For elevated temperature testing, a second Type-K thermocouple was placedon
the Iosipescu specimen to monitor surface temperature of the composite and test-
ing was conducted only when the composite surface temperature reached a
steady-state condition with no more than a £2% drift from the target temperature.
This channel was also routed into the A/D converter and displayed dynamically
along with the load-displacement data. Finally, the data acquisition system was in-
herently capable of externally plotting load-displacement response on 2
Hewlett-Packard X-Y Recorder and measuring 6 individual strains produced from
2 back-to-back, 3-element rosette or Iosipescu [16] strain gages.
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Figure 2, Biaxial losipescu test fixture.
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Figure 3. Schematic of high temperature experimental setup.

Room Temperature

At room temperature (from 24°C to 27°C), 53 specimens were tested to de-
termine the effects of loading conditions on composite shear strengths, estab-
lish the most important damage and failure mechanisms and characterize fail-
ure phenomena according to significance, whether intralaminar, interlaminar
or translaminar in nature. Of the specimens tested, 19 were from the 1st
PMR-15 plaque with an “as received” thickness (z,) of4.82 mm, 12 were from
the 2nd PMR-15 plaque (¢, = 5.15 mm), 12 were from the warp-aligned
Avimid-R (,=3.91 mm) and 10 were from the 0°/90° Avimid-R (¢,=3.92 mm).
Several specimens were also instrumented with self-temperature compensat-
ing rosette or Iosipescu gages placed on both sides to monitor out-of-plane
deformation, twisting and recording tensor strains at £ ;9 (where 6 =45° withre-
spect to the neutral gage axis). Front and back strains were averaged to deter-
mine G,,. Several experiments were also conducted to determine the effect of
loading block geometries, in the biaxial and modified biaxial fixtures, on the
biaxial failure process at room temperature. In particular, the effect of com-
pression generated by the loading blocks was examined for influence on the
failure process.
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Elevated Temperature

In addition, several shear tests were performed at elevated temperatures (up
to 315°C) within the environmental chamber to compare the strength and de-
formation properties based on ply orientations and matrix constituents. Ten
PMR-15 specimens from the 2nd plaque were reserved for these tests as were
12 warp-aligned and 0°/90° Avimid-R specimens. Strain gages were encapsu-
lated above 260°C to avoid possible signal degradation resulting from oxida-
tion of the Ag solder lead attachment paste and the target test temperature was
maintained for aminimum of 5 minutes prior to testing to ensure a steady-state
condition.

DAMAGE EVALUATION

For 0° unidirectional PMC specimens (fibers oriented along the long axis of
the losipescu specimen), failure under all loading conditions, either shear or bi-
axial, occurs as a result of axial splits initiated at the roots of the notches. These
splits form parallel to the fibers and propagate on one side of the notch tip away

~ from the nearest loading point. Both split formations are always manifested by

two successive drops on the load-displacement diagram. Unidirectional com-
posite specimens with 90° fibers (fibers oriented along the notch root axis) al-
ways fail catastrophically. For all loading angles, cracks originate at the notch
root and propagate in an unstable manner parallel to the fibers. The failure pro-
cess in both 0° and 90° unidirectional Iosipescu specimens can be easily ob-
served since the failure of the specimens is usually through the thickness and the
cracks are visible on the specimen surface. For the fabric composites, the failure
process is much more complex and can vary through the thickness. In this case,
the failure characteristics cannot be determined by examining the specimen sur-
face only, therefore a detailed analysis of damage through the specimen thick-
ness is required.

Current methods typically relied upon for image analysis of failed specimen
morphology include: SEM backscattering, texture and rugmapping, stereo pair-
ing, z-projections, laminography and mesh generation. To supplement the me-
chanical testing in this investigation, a novel image analysis technique was de-
veloped to evaluate the state of damage in a shear tested graphite-polyimide
specimen. This technique is based on capturing and qualitatively analyzing scan-
ning electron microscopy (SEM) images of damage from planar 2D specimen
slices (serial sections) and subsequently rendering an isosurface or 3D volume.
A full description of this damage image analysis technique can be found else-
where [26]. :
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Image Analysis Procedure

Following mechanical testing, the gage section of an Tosipescu specimen tested
in shear was removed using a Buehler Isomet, a low speed saw with a diamond tip
circular blade immersed in methanol. The removed gage section was encapsulated
by a low viscosity epoxy, pressurized at 310 kPa for 24 hours and temperature
cured. The purpose of the encapsulation was to arrest damage associated with the
mechanical test and prevent further damage caused by serial sectioning, thus mis-
representing actual results. Upon curing, the encapsulated fabric artifact was
placed in a fixture that permitted consistent indexing in the z-direction and stable
mounting on a scanning electron microscope (SEM) stage. It was found that con-
sistent indexing was critical not only for proper focus ata given working distance,
but for accurate reassembly of sections as well.

The artifact was initially polished until the top surface of the gage section was
exposed through the epoxy. The surface was then sputter coated with 150 Aof
Au-Pd deposit from a Technics Hummer II system to prevent localized charging
and poor image sampling during the capture process. Capturing and polishing
were consecutive through 4 more intervals of 350 #m thickness per interval at
which point the process was stopped because symmetry along the midline was as-
sumed and ensuing intervals would mirror previous ones. It should be noted that
this process was also repeated using an untested gage section in order to determine
ifencapsulation using epoxy was effective in protecting against additional damage
from polishing.

RESULTS AND DISCUSSION
Room Temperature Biaxial Data

All room temperature biaxial graphite/PMR-15 specimens from the same plate
tested to failure exhibited similar and quite repeatable failure characteristics. As
an example, Figure 4 shows the load-displacement response for three specimens
from the thinner plate tested at loading angles of 0°, +30°, and —30°, respectively.
The load-displacement response is quite linear and similar for small loads, but for
higher loads the response to biaxial loading conditions becomes more evident.
Clearly, the slope is the highest in shear followed by shear-compression and
shear-tension. Moreover, sudden drops or “triggers” are apparent upon reaching
the maximum load carrying capacity of the specimens. In all cases, the specimens
revealed a general trend towards stability of the failure process after this trigger.
The only exceptions were tests for the shear-tension loading conditions associated
with large displacements. Here, the tests resulted ina significant secondary (some-
times tertiary) rise and sudden drop in load. It should be pointed out however, that
the relationships between the biaxial loading conditions and the slopes might vary,
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Figure 4. Load-displacement diagram for graphite/PMR-15 (thinner) tested in shear (0°),
shear-tension (—30°) and shear-compression (+30°).

especially for the shear-compression and shear-tension curves for small loading
angles.

The mechanical response to biaxial loads of the PMR-15 specimens prepared
from the thicker plate exhibited very similar behavior for low to intermediate
loads. However, the load-displacement curves near the maximum loads did not
show the presence of the trigger observed for the specimens cut from the thinner
plate. In these cases, the loads, after reaching a maximum value, gradually de-
creased as a function of the applied displacement (see Figure 5).

Similarto the effect of biaxial loading conditions on the failure properties of the
graphite/PMR-135, the response characteristics of the graphite/Avimid-R systems
are also strongly dependent on these conditions with one exception. As shown in
Figure 5, the Avimid-R systems display a distinct “knee” indicative of multiple
cracking phenomena versus a sudden drop or trigger associated with large
delaminations. _ _

The shear and biaxial strengths of the composites were determined from both
the loads at the onset of nonlinearity and the maximum loads on the
load-displacement curves. The onset of nonlinearity was defined in this investiga-
tion as the abrupt change in the load-displacement response before a maximum
load was reached. One parallel line was drawn over the linear regime and a second
line was drawn tangent to the abrupt change. A third vertical line was placed at the
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intersection of the first two lines and the onset was that point formed by the inter-
section of the vertical line with the load-displacement curve. It is believed that the
onset of nonlinearity defined by this method represented significant damage de-
velopment in the fabric composites.

For the majority of PMR-15 specimens cut from the thinner plate, the inter-
preted nonlinearity and the maximum load capacity were nearly identical (trig-
ger). However, the load-displacement curves for the thicker PMR-15 specimens
exhibited the onset of nonlinearity slightly below the maximum load. For the
Avimid-R losipescu specimens, the onset of nonlinearity was considered to be the
same point as “the knee.” The shear strengths of the composites were determined
from the average shear stress in the specimen gage section and defined, at this
point, as the load divided by the cross-sectional area of the specimens. For the bi-
axial tests, the load was taken as P, cos (c), where & was the loading angle. The
strengths of the composites in shear and the shear strengths under biaxial condi-
tions (as a function of the loading angle) for the onset of nonlinearity and the maxi-
mum load are presented in Figures 6 and 7, respectively. The data shown in these
figures was obtained from the tests in the biaxial Tosipescu fixture with the short
loading blocks.

It can be seen in Figure 6 that the shear and “biaxial” shear strengths of the

4 no trigger

trigger /
/

= Avimid-R Systems

. \ PMR-15 System - 2nd plaque
\ PMR-15 System - 1st plaque

L.oad (N)

Y

Displacement (mm)

Figure 5. Typical load-displacement diagrams for losipescu specimens made from both
graphite/PMR-15 and graphite/Avimid-R plaques.
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Figure 6. Shear strength data determined at the onset of nonlinearity for all composites in-
vestigated.

PMR-15 specimens established from the loads at nonlinearity are, in general,
higher than the strengths of the Avimid-R systems. Moreover, there is an insignifi-
cant difference between the strengths for the PMR-15 specimens from the thicker
and thinner plates. The effect of the tensile dominated loading angle on the shear
strength properties of the PMR-15 composites is negligible. On the compression
side, the strength is reduced, indicating that there is some influence of compres-
sion on the loads at the onset of nonlinearity for this particular composite. The data
for the Avimid-R systems indicate similar trends, however, there is more scatter in
the experimental results.

The shear and biaxial shear strengths of the composites established for the max-
imum loads shown in Figure 7 clearly demonstrate that the Avimid-R systems ex-
hibit higher strength properties measured in shear and under biaxial conditions.
The reduction in the shear strength measured under the shear-compression condi-
tions seems to be more pronounced for the Avimid-R systems than for the PMR-15
composite. However, in all the systems, there is no effect of tension on the shear
strength properties.

The average shear strengths for the PMR-15 composite (thinner plate) at the on-
set of nonlinearity and the maximum load, measured in shear and at room tempera-
ture are 105.1 MPa and 106.5 MPa, respectively. The same strengths for the
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thicker plate are 115.2 MPa and 120.8 MPa. The shear strengths for the Avimid-R
warp aligned system are 102.6 MPa and 137.5 MPa, whereas for the Avimid-R
0/90 composites, the same strengths are 100.1 MPa and 147.3 MPa. The shear
stress-strain diagrams (for relatively small displacements) for the specimens from
the thinner plate are shown in Figure 8 for five different loading angles. The shear
strains in these specimens were measured using both Iosipescu strain gages and ro-
settes mounted back-to-back. A detailed description of this application of the
Tosipescu gages and stacked rosettes for the shear modulus measurements in the
biaxial Iosipescu test can be found in Reference [24]. Influences of specimens po-
sition, out-of-plane deformations and twisting on reliable shear strain readings
were previously established. '

In reference to Figure 8, the shear modulus G, is defined according to the fol-
lowing relationship: '

G.___f"xy_ P, cos (a)

xy f}’xy - Af (e* — £~4) M

where P, is the applied load at an angle normal to the longitudinal specimen axis,
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Figure 7. Shear strength data determined at the maximum load capacity for all composites
investigated.
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Figure 8. Typical shear stress-strain response for graphite/PMR-15 (thinner).

A is the cross-sectional area between the notches and g4 is the measured strain with
respect to the neutral gage axis. It can also be deduced that the average strain mea-
sured by a strain gage of grid area (4 X B) can be represented as follows [27]:

* 1 par2 pB2 % , % , %
645=—/I—Ef--4/2 _8/2845d5 dt @

where ds* and dr* are respective to gage coordinates corresponding to the dimen-
sions 4 and B. ’

The shear moduli (& = 0°) for both the thicker and thinner graphite/PMR-15
plates were determined to be 7.6 GPa and 6.3 GPa, respectively. Both the losipescu
gages and rosettes gave very similar estimates of the shear moduli. This might sug-
gest that the strain field in the fabric Iosipescu specimen is fairly uniform along the
notch root axis, otherwise the strains and thus, the moduli obtained from using two
completely different gage geometries would yield totally different shear moduli
estimates. Since the losipescu gages measure the average strain along the entire
notch root axis, whereas the small-element rosettes measure the strain only at the
specimen center, any nonuniform strain distribution would be reflected by obvious
differences in measurements.

As of this writing, a viable explanation cannot be given as to why the biaxial
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shear-compression, stress-strain response supersedes that of biaxial shear-tension
as shown previously in Figure 8. Since shear strength of the PMR-15 system is pre-
dominantly dictated by the properties of the matrix and imposed by resin rich un-
dulations in the woven geometry, it is expected that introduction of a tensile com-
ponent should result in a sharper slope than introduction of a compressive
component. However, as observed, this was not the case, speculatively due to
shear and compression-coupled bundle locking influences on load transfer to un-
damaged laminae. Arguably though, it is also reasonable to assume that shear and
tension coupling would resist bundle movement as well, subsequent to matrix fail-
ure, resulting in a different mode of transfer. It is also possible that the effect of the
out-of-plane deformations on the shear strain measurements may be dependent on
the biaxial loading conditions. Therefore, the out-of-plane deformations may also
affect the shear modulus measurements differently for various biaxial loading
conditions. However, this behavior has not been investigated in this research.

Elevated Temperature Shear Tests

The high temperature losipescu shear (a = 0°) tests were conducted using the ex-
perimental set-up presented in Figure 3. The tests were performed on the PMR-15
composite specimens prepared from the thicker plate. The effect of high tempera-
ture on the shear strength properties of the thinner plate was not evaluated due to an
insufficient number of specimens available for the high temperature research. The
high temperature shear tests were also performed on the Avimid-R (both the warp
aligned ‘and 0°/90°) composite systems. The high temperature experiments were
conducted using the biaxial Iosipescu fixture with the short loading blocks. The ef-
fect of different loading block geometries on the high temperature shear strength
properties was not examined again due to an insufficient number of specimens.

As an example a set of shear stress-displacement curves for the PMR-15 speci-
mens obtained at various temperatures is shown in Figure 9 whereas the curves for
the Avimid-R specimens (warp aligned) are presented in Figure 10. The curves for
the Avimid-R specimens (0°/90°) exhibited very similar behavior. It can be seenin
these diagrams that both the loads at the onset of nonlinearity and the maximum
loads are significantly affected by temperature. Clearly, the influence of tempera-
ture on the shear strength properties of the Avimid-R composites is stronger than
for the PMR-15 system. The shear strengths of the composites determined from
the loads at the onset of nonlinearity and the maximum loads are illustrated in Fig-
ures 11 and 12, respectively. The data presented in these two figures represent the
average points for each temperature. In addition, the high temperature shear
strength results for the composites are listed in Table 1. As far as the shear
strengths at the onset of nonlinearity are concerned, both Avimid-R composites
exhibit very similar behavior. A large reduction in the shear strength with tempera-
ture was observed. The PMR-13 system also exhibited a reduction in shear
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strength at high temperature, however the reduction in strength was smaller in
comparison with the Avimid-R systems. The shear strengths of the composites de-
termined from the maximum loads were also affected by temperature (see Figure
12). The data presented in Figure 12 clearly demonstrate that the shear strength of
the PMR-15 system at room temperature is lower than the shear strength of the
Avimid-R systems. However, at high temperatures the PMR-15 system exhibits
better shear strength properties in comparison.

The shear moduli of the graphite/PMR-15 composite from the thicker plate
were also measured as a function of temperature. The strains were obtained using
high temperature, three element rosettes mounted on the specimens in the gage
section. Typical examples of the strain-applied load relationships are presented
in Figure 13. The shear moduli at room temperature (25.6°C), 204.4°C and 260°C
are 6.0 GPa, 3.0 GPa and 2.8 GPa, respectively. Shear strains above 260°C were
not obtained because the high temperature gage encapsulant failed and the Ag

Table 1. Room an_d high temperature shear strength results.

Shear Strength’  Shear Strength at

at Nonlinearity Maximum Load
Material Temperature (°C) {MPa) Capacity (MPa)
Avimid-R (warp-aligned) 24.4 108.9 ) 143.0
Avimid-R (0/90) 24.4 1099 . .164.3
Avimid-R (0/90) © 244 119.4 156.0
PMR-15 (thicker) 26.7 117.9 121.5
PMR-15 (thicker) 204.4 - 96.3 111.6
PMR-15 (thicker) 204.4 81.9 . 100.8
PMR-15 (thicker) 204.4 84.6 101.7
Avimid-R (warp-aligned) 204.4 709 1123
Avimid-R (0/90) 204.4 74.5 : 118.2
Avimid-R (warp-aligned) 204.4 83.9 - 114.7
Avimid-R (warp-aligned) 2322 68.6 106.4
Avimid-R (0/90) 232.2 70.9 , 117.0
Avimid-R (warp-aligned) 232.2 67.4 . . 108.7
PMR-15 (thicker) 260.0 873 102.6
PMR-15 (thicker) 260.0 66.6 93.6
PMR-15 (thicker) 260.0 . 65.7 . 95.4
Avimid-R (warp-aligned) 260.0 54.4 95.7
Avimid-R (0/90) 260.0 50.8 108.7
Avimid-R (warp-aligned) 260.0 - 54.4 93.4
PMR-15 (thicker) 287.8 56.7 81.0
PMR-15 (thicker) 287.8 72.0 97.2
PMR-15 (thicker) 315.6 55.8 75.6
PMR-15 (thicker) 315.6 50.4 68.4
Avimid-R (warp-aligned) 315.6 213 - 34.3
Avimid-R (0/90) 315.6 27.2 46.1

Avimid-R (warp-aligned) 315.6 248 ' 37.8
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Figure 13. Typical examples of the strain-applied load relations.

gage lead solder paste oxidized, resulting in erratic strain readings. If the shear
strengths of the composite for the above three temperatures (120.8 MPa, 104.7
MPa and 97.2 MPa) are compared with the shear moduli, it is evident that the re-
duction in the shear strength properties is significantly smaller than the reduction
in the stiffness properties as a function of temperature.

In Figures 4, 9, and 10, load-displacement curves were presented for the room
and elevated temperature shear and biaxial Iosipescu tests. The reason why the
mechanical response of the composite as a function of temperature and loading
conditions was illustrated in these diagrams in terms of the load-displacement
curves instead of load-strain curves was due to severe experimental difficulties
caused by the decoupling of the strain gages from the specimens at large applied
displacements and elevated temperatures. Because of the out-of-plane deforma-
tion (bulging) of the specimens at high loads it was impossible to determine the
complete load-strain curves under the above loading conditions.

DAMAGE AND FAILURE MECHANISMS
Room Temperature Tests

The deformation and failure processes in the graphite/PMR-15 Iosipescu speci-
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mens were vastly different compared to the graphite/Avimid-R specimens. More-
over, the failure process in the specimens cut from the thinner and thicker plates
appeared to be different as well. There are also slight differences between these
properties determined by testing the warp-aligned and 0°/90° graphite/Avimid-R
specimens. As far as both PMR-15 systems are concerned, the micro-failure pro-
cess starts from the initiation of interlaminar cracks with some evidence of
intralaminar and translaminar cracking. This leads to the formation of large
delaminations - within the gage section of the losipescu specimens. These
delaminations are especially large in the case of the specimens cut from the thinner
plate. At some point, one of the interlaminar cracks propagates catastrophically
along the sample, causing the trigger previously shown. These large damage zones
lead to significant and permanent out-of-plane deformation (bulging) on the sur-
faces of the specimen. Figures 14a—14f illustrate the sequence of events leading to
bulging and in-plane kinking as a specimen is loaded. This effect is more pro-
nounced under shear-compression loading conditions since large compressive,
in-plane stresses generated within the gage section will create opening displace-
ments at the tip of an interlaminar crack, thereby making the entire failure process
easier. This might explain why the maximum loads decrease as the specimens are
loaded under the shear-compression loading conditions. Conversely, we can ex-
pect the process to become more difficult in shear-tension due to crack closure.
The formation of the interlaminar cracks and large delaminations appear to be sig-

Figure 14a. Damage zone developmentat the notch root of graphite/PMR-15 (thinner) at 1334 N.
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Figure 14f. Damage zone development at the notch root of graphite/PMR-15 (thinner) at
max load.

nificantly constrained due to perhaps significantly higher interlaminar fracture
toughness properties of the material in the thicker plate. In this case, the sudden
drops at the maximum loads were not observed.

The micro-failure process that determines the failure of the Avimid-R system is
the formation of intralaminar cracks along the notch root axis (see Figure 15). The
second mechanism is the ensuing formation of interlaminar cracks (see Figure 16).
These interlaminar cracks start forming at “the knee.” Since this composite ap-
pears to have very good interlaminar fracture properties (Avimid-R matrix G,¢c =
1.0 kJ/m? versus PMR- 15 matrix G- = 0.3 kJ/m?), the interlaminar failure process
is not as severe as exhibited by the PMR-135 system and occurs at higher loads.
Therefore, it is expected that less out-of-plane deformation would be exhibited,
which was the case in this investigation. :

High Temperature Tests

The morphology of the damage zones in the gage sections of the osipescu spec-
imens tested at high temperatures seems to be similar to the room temperature con-
ditions. Very similar out-of-plane permanent deformations (bulging) associated
with the formation of interlaminar cracks were also observed. However, it is diffi-
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Figure 15. Development of intralaminar cracks at the notch rootin the

ite just before the “knee.”
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Figure 16. Interlaminar cracking
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cult to determine at this point if the interlaminar cracking was more severe in the
specimens from the high temperature experiments than in the samples tested at
room temperature.

DAMAGE IMAGING

Obviously, the intralaminar and interlaminar cracks observed in both the graph-
ite/PMR-15 and graphite/Avimid-R losipescu specimens tested at room tempera-
ture have to be initiated somewhere. To determine damage initiation location, an
efficient method needs to be used to look beneath the specimen surface. In this in-
vestigation, individual, through-thickness slices were removed from a graph-
ite/PMR-15 losipescu specimen tested in shear (from the thinner plate) and exam-
ined qualitatively for the development of damage. Two-dimensional damage maps
were generated by applying a low-pass smoothing filter to SEM images of each
slice in conjunction with a3 X 3 median (rank) filter to establish an outline for each

-area of detected damage, i.e., determined via contrast changes. For this study, 3 X

3 kernels of the form:

—
b bt
b

o

=
—
—
—

3)

Xy =median{X ;: (7', jYEW (i, j)}

were assumed to remove noise from one-dimensional or two-dimensional signals
while preserving image information content. The two-dimensional median filter
defined in Equation (3), where (i) reflects centering of the filter window at im-
age coordinates (i,/), essentially allows for sorting of a 3 X 3 pixel neighborhood
and replacement by amedian. This suppresses image noise, improves thresholding
and yields a consistent estimation of crack edges.

Once edge detection was complete, each map of damage was stacked on top of
another in the reverse order that each slice was removed from the specimen. Figure
17 represents a stack average of the damage removed from an area approximately
9 mm? at the center. This process was also applied to an untested sample to deter-
mine whether or not polishing to remove slices was responsible for some of the
damage shown in the map. As Figure 18 illustrates, it is evident that mechanical
polishing had littie or no effect on causing significant additional damage. The
darker areas located on the map mostly likely represent undulated resin-rich pock-
ets and/or in situ manufacturing voids.
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Before shear testing occurred, the woven bundles were oriented orthogonally
along both the long and notch root axes of the specimen. Due to the large shear
stresses generated during the Josipescu shear test, bundle rotation took place in the
middle portion of the specimen, with the final bundle orientation being approxi-
mately 45° with respect to the notch root axis. It is quite possible that the diagonal
shaded areas shown on the map in Figure 17 represent a combination of
intralaminar failures at the fiber bundle-matrix interfaces and failure at weave
(warp/fill) undulations or crimps. Very little cracking is evident in the direction
parallel to the long axis of the specimen and vertical cracks (damage zones) dic-
tated by much larger areas appear to represent the interlaminar failure process. It is
also possible that one of the vertical cracks could be associated with triggers simi-
lar to those shown in Figure 4. Here, it is initially assumed that the shearing re-
sponse forces the bundles to rotate and fail at the undulations as progressive
intralaminar damage develops.

During the shearing process, the ends of the specimen simultaneously shift to-

~ ward the center and kinking occurs. At some critical point, governed by the

interlaminar fracture toughness, damage development and crack propagation is so
catastrophic that both specimen faces bulge away from the center and the process
alternates from a Mode II dominated, mixed-mode behavior to a Mode I domi-
nated, mixed-mode behavior. This seems to be the case of the specimens from the
thinner PMR-135 plate. The newly developed damage analysis technique used here
can also be applied to various fabric composite systems tested in different environ-
ments.

FINITE ELEMENT COMPUTATIONS

In practice, the in-plane shear response of most composite materials exhibits se-
vere nonlinearity. The nonlinearity is usually attributed to the plastic deformation
of the matrix. However, it is possible that this response could be partly composed
of the geometric nonlinearities, i.e., large rotations and displacements as well as
boundary contact nonlinearities such as specimen sliding along the loading blocks
in the biaxial losipescu fixture. These nonlinear effects could be especially well
pronounced in the Iosipescu specimens tested under large displacements. Since
the fabric graphite-polyimide composites investigated in this research fail at large
displacements, especially under biaxial loading conditions, these nonlinear effects
must be numerically investigated and their influence established on the stresses in
the Tosipescu specimens and thus, the failure process of the composites.

An attempt was made in this study to evaluate the effects of specimen sliding
and geometric nonlinearity (due to the change of specimen geometry) on the
global mechanical response and internal stresses/strains of the graphite-polyimide
Tosipescu specimens subjected to shear, shear-tension and shear-compression.
The nonlinear material behavior was not considered in this research due to the lack
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of appropriate constitutive equations for the materials studied. The finite element
computations were conducted assuming that the specimens were loaded in the bi-
axial fixture with the short loading blocks and the modified fixture with the long
loading blocks similar to the ASTM standard D5379/D5379M-93. The specimens
were subjected to external displacements up to 3 mm. Since the failure of the spec-
imens occurs at significantly higher displacements (up to 7 mm) for larger loading
angles, the computations should have been performed with the displacements
matching the experimental results. However, due to very high computation times
required for convergence of these very large deformation cases, the finite element
analyses in this study are restricted to prescribed displacements of 3 mm.

Two finite element models were considered. The first model is the standard lin-
ear elastic model of the losipescu specimen loaded by prescribed displacements
[Figure 19(a)]. In this model the right side of the specimen is loaded by prescribed
vertical displacements on the loading blocks, whereas the loading blocks on the
left side of the specimen are constrained against any vertical displacements. This
model assumes free axial movements of the specimen along x together with the
loading blocks, which are perfectly bonded to the specimen. Since the loading
blocks are not constrained against the movements in the x-direction this model
simulates free sliding of the specimen along x with zero friction. It should be men-
tioned here that the linear model with the vertical prescribed displacements and
vertical constraints is not suitable for the linear elastic finite element analyses of
the Tosipescu specimen under biaxial loadmo conditions. Only the shear loading
conditions can be simulated.

The other model is nonlinear with contact elements placed between the loading
blocks and the specimen [Figure 19(b)]. In this model, the specimen center is con-
strained against vertical and horizontal displacements (u, and u, are zero). The
blocks on the right side of the specimen have prescribed displacements of —u/2
whereas the blocks on the opposite side of the specimen are loaded by the positive
displacements of the same magnitude. Thus, the total prescribed displacement act-
ing on the specimen is equal to u. Using these boundary conditions, the effect of
specimen rotation can be investigated with sliding and geometric nonlinearity by
resolving the displacements into components [28-29].

In the above models, the thickness of the specimen was assumed to be 1 mm and
the loading blocks were assumed to be homogeneous and made from steel. The
material properties of the losipescu specimens investigated in this study are pre-
sented in Table 2. The finite element computations were performed on a dual pro-
cessor, Intel Pentium Pro™, 180 MHz configuration using’ ANSYS 5.3 and
two-dimensional FEM representations of the Iosipescu specimens were con-
structed using six-noded triangular and eight-noded quadrilateral isoparametric
elements as shown in Figures 20(a) and 20(b). The frictional interfaces between
the loading blocks and the specimen were modeled using two-dimensional
point-to-surface contact pseudoelements. Along the specimen-to-fixture contact

v
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Figure 19. Boundary conditions used in the finite element computations: (a) linear elastic case
and (b) nonlinear case. * :

regions, a Coulomb friction model was assumed, allowing both sticking and slid-
ing conditions.

The numerical load-displacement diagrams for the losipescu specimens loaded
in shear in the biaxial and modified biaxial fixtures are presented in Figure 21.
The global loads were calculated from the normal and shear reactions on the load-
ing blocks as a function of the prescribed displacement for a friction coefficient of
0.3. The mechanical response of the specimen was determined from the linear
elastic finite element model with zero friction and the nonlinear model with con-
tact elements. It can be seen that the effect of specimen sliding and geometric
nonlinearities on the load displacement diagrams is almost insignificant for pre-
scribed displacements up to 3 mm. However, this cannot be said for specimen de-
formation and internal stresses.

Table 2. Elastic properties used in finite element computations.

Properties Specimen Properties Loading Block

Model E,(GPa) E,(GPa) G, (GPa) v, E,(GPa) G (GPa) v,

Biaxial Fixture 79.0 79.0 7.50 0.15 400 400/2(1 + 0.30) 0.30
Modified Biaxial 79.0 79.0 7.50 0.15 400 400/2(1 + 0.30) 0.30
Fixture
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Figure 20. Finite element meshes of losipescu specimens: (a) short loading blocks (biaxial fix-
tures) and (b) long loading blocks (modified biaxial fixture).
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In Table 3, the internal stresses at the specimen center for the two finite element
models loaded in shear with 1 mm, 2 mm and 3 mm prescribed displacements are
shown. In addition, the shear stresses are calculated from the global reaction force
P via dividing the total global reaction by the cross-sectional area of the specimen.
The nonlinear effects, sliding and geometric nonlinearities, have a marginal influ-
ence on the internal shear stresses at the specimen center for both models. How-
ever, the normal stresses, especially the tensile stress o, seem to be significantly
affected. There is good agreement between the shear stresses determined from the
reaction forces and the stresses at the specimen center. It can be seen that the com-
pression along the notch root axis o, in the biaxial fixture is high, almost 50% of
the shear stress along the notch root axis. The compression is smaller in the modi-
fied biaxial model with the longer loading blocks. This is not surprising since the
long loading blocks in the Iosipescu shear test, according the ASTM standard,
were designed to reduce the compression caused by the loading blocks. In this
case, the compression is about 10% of the shear stress. Since the failure process in
the Iosipescu graphite/polyimide fabric composites is predominantly interlaminar
in nature, the in-plane compression along the notch root axis would enhance the
failure process. The interlaminar cracks in the specimen could initiate and propa-
gate easier in the presence of the compression and thus reduce the loads at failure
(both the loads at the onset of significant damage and the maximum loads).

It can be expected that the stresses in the Tosipescu specimen will change if the
specimen is rotated either towards shear/tension or shear/compression. The nu-
merical load-displacement diagrams, derived from the non-linear mode! for vari-
ous loading angles, are presented for the biaxial and modified biaxial fixture in
Figure 22. In addition, the internal stresses in the center of the specimens are
shown in Figure 23 and Figure 24 for three different prescribed displacements (1
mm, 2 mm, and 3 mm). It is clearly evident that the loading angle affects the me-
chanical response of the specimen similar to the experimental results shown in
Figure 4. What is more important is the fact that the stresses in the specimen loaded
in the biaxial fixture with the short loading blocks are always biaxial and large
compressive stresses are always present in the gage section, despite the angle of
applied load. The tensile stress component oy increases only slightly if the speci-
men is rotated towards larger shear-tension loading angles. Moreover, the ratios of
shear-tension and shear-compression seem to be unaffected by magnitude of the
applied displacement.

Examination of the stresses at the specimen center, as a function of the loading
angle, fora specimen loaded in the fixture with long loading blocks reveals that the
normal compressive stress o,, can be entirely eliminated if the specimen is loaded
at an angle somewhere between 15-20° shear-tension. At this angle, the stress
field in the specimen gage section is almost pure shear with only a small tensile
stress component, which is almost ins ignificant in comparison with the shear
stress. These small in-plane tensile stresses should not affect the failure process in
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the fabrics. Therefore, it can be concluded that by loading the specimen in the
modified biaxial fixture at an angle above —15°, the specimen gage section will de-
velop a superlative shear stress field. .

It should be pointed out that the nonlinear finite element computations were re-
stricted to 3 mm displacements. Under certain biaxial loading conditions, some of
the specimens failed at displacements beyond the prescribed 3 mm. Atthis point, it
can only be assumed that the impact of this limitation on understanding the failure
process of the fabric Iosipescu specimens is trivial.

EFFECT OF THE LOADING BLOCKS ON THE FAILURE PROCESS

The biaxial losipescu fixture employs short loading blocks. It has been previ-
ously shown [24] that for this loading block geometry, large compressive stresses
develop in the specimen gage section. It could be speculated that the in-plane com-
pression along the notch root axis in the fabric losipescu specimens tested either in
shear or under biaxial loading conditions might significantly affect the loads at
failure and the failure modes in the composites investigated. In the previous sec-
tion of this work, it was shown that the compression can be entirely eliminated by
employing the new loading block geometry similar to the previously mentioned
ASTM standard and by rotating the specimens towards the shear-tension loading
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condition. This should produce an almost pure shear stress field in the fabric
losipescu specimens.

Since the admixture of the old and new loading blocks allows different combi-
nations of in-plane biaxial shear and compressive stress fields to be generated, we
can now examine the effect of these different induced states of stress on the failure
process in the PMR-15 and Avimid-R based composites. Ifthe compression gener-
ated along the notch root axis by the short loading blocks was influential in pro-
moting the failure process in the composites, both the loads at the onset of
interlaminar damage and the maximum failure loads should increase when the lon-
ger loading blocks are employed. In this case (see Figure 24), the axial compres-
sion to shear ratio along the notch root axis is approximately 0.1 which is signifi-
cantly smaller than the same ratio in the specimens loaded under the same
conditions in the fixture with the short loading blocks (~0.5). Moreover, the loads
at failure for the specimens tested in the modified biaxial losipescu fixture under
shear/tension (with the loading angles about 15-20°) should be even higher since
the stresses at the center of the specimen are almost pure shear without any com-
pression along the notch root axis. The results presented in Table 4 clearly contra-
dict the above speculations.

Table 4 shows that there are significant differences between the failure loads for
the PMR-15 specimens from the thinner and thicker specimens shear tested in the
fixture using the short loading blocks. These differences are most likely due to im-
proved interlaminar strengths resulting from variation in the manufacturing pro-
cess. However, if we compare the loads for the losipescu specimens made out of
the same plate, the thicker one, the change in the shear loads at failure for the speci-
mens tested with the new and old loading blocks is almost insignificant. The same .,
statement can be made regarding the results for the Avimid-R samples tested under
the same conditions. For these materials, the average load at the knee for the
warp-aligned samples tested in shear with the short loading blocks is 4.56 kN and
the average maximum failure load is approximately 6.45 kN. If we compare these
loads with the loads for the same specimens tested in shear with the long loading
blocks (4.89 kN and 6.56 kN), it can be immediately concluded that the effect of
the compression on the failure loads is negligible. The same behavior was also ob-
served for the 0°/90° specimens tested in shear with two different loading block
geometries. In this case, the average loads at the knee and the average maximum
failure loads for the shortblocks are 4.55 kN and 6.75 kN, respectively whereas the
same average loads for the specimens tested with the long blocks are 4.89 kN and
6.56 kN.

In conclusion, the failure modes and loads at failure are not affected by the com-
pression generated by the inner loading blocks in the gage section of the specimens
tested in shear. This is not surprising since the compressive strengths of graph-
ite/polyimide fabric composites are always significantly greater than the shear
strengths. It has been recently shown by Grape and Gupta [9] that the compressive
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strength of a graphite/polyimide fabric composite (8-harness ICI HMF-2474 car-
bon fiber cloth, 20 plies thick) tested under uniaxial compression at room tempera-
ture is appro‘«mately 600 MPa. Since the shear strengths of the composites inves-
tigated in this project are approximately 6 times lower than the compressive
strength of the fabric investigated by Grape and Gupta, it is reasonable to assume
that the compressive stress 0,; along the notch root axis (which is lower than the
shear stress at the specimen center) does not contribute to the initiation of
interlaminar damage, even if the short loading blocks are used. Therefore, the re-
sults presented in this paper regarding the shear strength properties of the PMR-15
and Avimid-R composites obtained using the biaxial Iosipescu fixture at room and
high temperatures are valid and they are not affected by the compression from the
loading blocks.

As shown in Figures 6 and 7, the failure process under shear-compression load-
ing conditions at room temperature is dependent in the loading angle. Clearly,
there is a general trend regarding the strength properties and the loading angle.
Figures 6 and 7 indicate that the strength properties gradually decrease as the spec-
imen is rotated towards shear-compression. Obviously, under shear-compression,
the compressive stresses in the gage section of the specimens increase as the speci-
men is rotated towards larger loading angles (see Figures 23 and 24) regardless of
the loading block geometry. This increase in compressive stresses due to specimen
rotation within the fixture affects the failure process and thus the loads at failure.

CONCLUSIONS

1. The application of the biaxial Iosipescu technique has been successful in deter-

_ mining the biaxial shear dominated failure properties of graphite/polyimide
woven composites at room and elevated temperatures. The biaxial strength
properties of the graphite/PMR-15 and graphite/Avimid-R composites defined
by the maximum load are different at room and elevated temperatures.

2. The shear strength of the Avimid-R system at room temperatures determined
from the maximum load is higher than the shear strength of the PMR-15 com-
posite. However, the shear strength properties of the graphite/PMR-15 com-
posite at elevated temperatures are significantly better than the propemes of
the Avimid-R system.

. It has been observed in this research that the onset of significant interlaminar
damage can be associated with the formation of a knee on the
load-displacement diagrams for the Avimid-R system. In the case of the
PMR-15 system, the damage can be defined by the onset of nonlinearity on the
load-displacement curves, which usually occurs just before the maximum load.
It appears that the significant development of interlaminar damage in the
PMR-15 system tested under biaxial conditions at room temperature occurs at

W
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lower shearstresses in comparison with the A vimid-R based composite. Atele-
vated temperatures, the interlaminar damage in the PMR-15 composite devel-
ops at a much higher level of shear stress than in the Avimid-R composite.

4. The mechanical properties and failure modes of the PMR-15 composite system
tested at room temperature seem to be dependent on the manufacturing pro-
cess. The losipescu specimens cut from the thinner plate exhibit significantly
lower loads at failure in comparison with the specimens from the slightly
thicker plate. It appears that the out-of-plane bulging in the thinner specimens
is greater than in the thicker ones. Since the final failure of the specimens is as-
sociated with the formation of multiple interlaminar cracks, this might suggest
that the interlaminar strength properties of the composites strongly depend on
the manufacturing process.

5. The finite element computations of the Iosipescu specimens have shown that
the specimens loaded in the biaxial Iosipescu fixture in shear develop large
compressive stresses at the specimen center. This compression cannot be elimi-
nated by rotating the specimens. For any biaxial loading conditions, the state of
stress in the gage section of the specimens is always biaxial with large compres-
sive stresses present along the notch root axis. It has been shown, however, that
the compressive stresses generated by the loading blocks can be entirely elimi-
nated if the longer loading blocks geometry is used in conjunction with speci-
men rotation toward the shear/tension loading condition.

. 6. The PMR-15 and Avimid-R composites have been tested using the biaxial and

modified biaxial Iosipescu fixtures. Various biaxial shear-compression stress

states in the specimens have been generated, based on thé finite element com-
putations, ranging from almost pure in-plane shearto shear-compression. Ithas
been found that the effect of the large in-plane compressive stress generated by
the loading blocks in the biaxial fixture do not affect the failure modes of the
composites investigated under shear and shear-tension loading conditions.

However, when the compressive stresses in specimen gage sections are in-

creased due to rotation towards larger shear-compression loading angles, the

room temperature strength properties of the composite decrease.
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Abstract

An elastic-plastic, time-independent, macroscopic, homogenous model of a 8HS woven
graphite/PMR-15 composite material has been developed that predicts the non-linear response of
the material subjected to shear-dominated biaxial loads. The model has been used to determine
the response of woven composite off-axis and Iosipescu test specimens in non-linear finite
analyses using a multi-linear averaging technique. The numerically calculated response of the
specimen was then compared to experimentally obtained data. It has been shown that the
numerically calculated stress-strain diagrams of the off-axis specimens are very close to the
experimentally obtained curves. It has also been shown that the numerically determined shear
stress-strain and load-displacement curves of the woven Josipescu specimens are close to the
experimentally obtained curves up to the point of significant interlaminar damage initiation and
propagation. The results obtained in this study clearly demonstrate that the non-linear material
behavior of the graphite/polyimide woven composites subjected to shear-dominated biaxial
loading conditions cannot be ignored and should be considered in any stress analysis. The linear-

elastic approach grossly overestimates the loads and stresses at failure of theses materials in the




off-axis and Iosipescu tests. It can be assumed that the same discrepancies will arise in the
numerical analysis of the woven composites tested under other biaxial shear-dominated loading

conditions using other biaxial test methods.
1. Introduction

High temperature polymer matrix composites are finding an increasing use in the electronics and
aerospace industries. The main advantage of using these materials is the high specific strength
that they can achieve at room and elevated temperatures (up to 670° F). One of the premier high
temperature polymer resin systems is PMR-15, which is a thermosetting polyimide that is
primarily used in aircraft structures. PMR-15 offers a combination of relatively good thermal-
oxidative stability, processability, mechanical properties, and cost [1]. The constituent monomers

are soluble in easily removed solvents such as methanol, which makes the impregnation of the

fiber reinforcement relatively easy [2].

Cloth based graphite/polyimide composites effectively translate stiff, strong yarns (bundles of
10%-10* fibers) into stiff, strong composites. The satin weave pattern is defined by the number of
yarn widths between exchanges and these exchanges are arranged so as not to connect. The 8-
Harness satin weave (8HS) has a 7-over, 1-under pattern (Figure 1). Of all 2D weave patterns,

the 8HS is of particular interest since the float is long and exchanges are minimized. The 8HS

woven architecture exhibits good conformability (drape) over complex surfaces. However,

conformability and resistance to shear and shear-dominated biaxial in-plane loading conditions

tend to be inversely related [3,4].

A major limitation of many fabric fiber/polymer matrix composite systems is the inability of
these materials to resist intralaminar and interlaminar damage initiation and propagation under
shear-dominated biaxial loading conditions. Since it is essential to have a reliable database of
mechanical properties for the successful application of 8HS fabric Graphite/PMR-15 composites,
their response to these loading conditions must be fully investigated. The purpose of this
research is to quantitatively investigate the non-linear behavior (elastic-plastic) of this material

under shear-dominated biaxial loading conditions using a macroscopic approach. It will be
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assumed that the 8HS woven fabric composite is a quasi-isotropic homogeneous material. This
approach will provide a model in which microscopic models may be compared to in future
research. A mathematical constitutive model has been developed to represent the time
independent elastic-plastic properties of this material based on the off-axis tensile tests. This
model will then be applied to the numerical determination of the stresses in the off-axis and

Tosipescu shear tests (both of which create a biaxial stress state in the material).

The Iosipescu shear test, which was originally intended for determining shear properties of
metals [5], was first applied to composite materials by Adams and Walrath [6,7]. The original
design of the fixture was then modified to reduce large compressive stresses generated in the
gage section of the specimen [8,9]. The modified Wyoming Iosipescu shear test has become one
of the most popular test methods for the shear characterization of composite materials, and has
become an ASTM standard [10]. Since 1994, a series of papers has outlined the non-linear
effects in the Iosipescu shear test that affect the shear strength determination. Ho et al. [11]
showed the effects of geometric, boundary contact, and material non-linearities using non-linear
finite element techniques. However, they determined the boundary contact and material non-
linearities of unidirectional composites based on a non-experimental parametric study, which
lead to questionable results. Kumosa and Han [12] and Odegard et al. [13] investigated the
effect of boundary contact and geometric non-linearities involved in the Iosipescu shear test. In
particular, Odegard and Kumosa [14] investigated the effect of material non-linearity on the
mechanical behavior of unidirectional composites subjected to the Iosipescu test. They showed
that the Iosipescu specimen response (load-displacement and load-strain curves) can be
determined accurately only if the actual elastic-plastic properties of a unidirectional composite

are experimentally determined and then used in a finite element model.

Very little research has been performed on the testing of woven fabric composites with the
Tosipescu shear test [3,15]. Searles et al. [3] experimentally investigated 8HS graphite/PMR-15
composite Iosipescu specimens at room and elevated temperatures. They also introduced a finite
element model of the Iosipescu specimen made of this material. The model assumed boundary
contact and geometric non-linearities. The effect of material plasticity on the response of the

| specimens was not considered at that time due to the lack of a reliable material non-linearity




model. In order to accurately model the Iosipescu shear test of fabric composite specimens from
a homogeneous approach, the actual macroscopic elastic-plastic properties need to be determined
and used in a finite element model, as shown by Odegard and Kumosa [14] in their study of

unidirectional graphite/epoxy composites subjected to the Iosipescu test.

Many researchers have suécessfully performed the calculation of elastic and plastic properties of
unidirectional polymer matrix composites [16-18]. However, the determination of mechanical
properties of woven fabric composites using experimental uniaxial/biaxial tests has been limited
[19-22]. A few published attempts have been made to apply a macroscopic continuum approach
to determine the plastic behavior of woven fabric composites. Vaziri et al. [23] suggested a
plasticity model for bi-directional composite laminates that requires the knowledge of the axial
and shear yield strengths, which can be difficult to define and to obtain experimentally for
composite materials. Also, their model provides only a-bi-linear approximation of plastic
properties. Naik [24] suggested using an empirical relationship between shear stress and shear
strain, however this type of approach cannot be generalized for different fiber architectures (e.g.
unidirectional composites and 3-dimensional composites). The theory proposed below assumes
the presence of inelastic deformation at very small shear stresses (which has been experimentally
verified) instead of assuming known shear strength values. In addition, the axial strengths of the
composites are unnecessary. The resulting constitutive équation in shear is a continuous power-
law type curve. The assumptions used in formulating the theory proposed herein can be easily

changed to describe the inelastic deformation of other fiber architectures.

In this paper, off-axis tensile testing will be used to characterize the time-independent elastic-
plastic properties of the 8HS graphite/polyimide composite. These properties describe the
bzhavior of the material under anv rulti-axial loading condition. Therefore, they can be directly
applied (numciically or analyiicaily) to determinc the respornse oi any stiucture méed . o this
material. In the next stage, the elastic-plastic model will be applied to determine the response of
the 8HS graphite/polyimide Iosipescu specimens. It is highly desirable to numerically apply this
approach to the Iosipescu problem since it represents a case where the same material is subjected

to shear-dominated biaxial stresses, and therefore offers an excellent opportunity to verify the

plasticity model.
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2. Plasticity Theory

Yield Function:

The theory proposed below is an extension of Hill’s formulation for anisotropic plasticity {25].

Maﬂy researchers have used this type of approach to successfully model unidirectional
composites [26-29]. Specifically, the approach developed by Sun and coworkers has proven to
be simple and relatively accurate [14,28,30]. The mathematical theory of the plasticity for fabric
composites developed in this paper employs a similar approach and is derived based on Hill’s
theory of an anisotropic yield function, and its modification to a plastic potential. The yield

function used in this model is:

a a a
_ay 2 2 2 32
f(o-ij)__é—o-ll + 5 Oy + 5 O3 +0,,0,,0 +430,033 +05302»03;
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2 2 2
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where o is the stress tensor (with the 1 and 2 axes parallel to the two fiber directions) and a; is
the anisotropy tensor. The flow rule that relates the plastic strain increment tensor and the stress

tensor is:

_ ¥lo,)
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where deijp is the plastic strain increment tensor, d\ is a scalar value to be determined
experimentally, and the yield function f(cy) plays the role of the plastic potential. It is assumed
that the graphite fibers in a woven composite prevent plastic deformation along the x; and X»

axis, therefore:
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Substitution of equation 1 into 2, and using the conditions specified in equation 3 reveals:

A, =Q;, =03, =0y =0, =0

©)
Assuming zero plastic dilatation:
a3 =0
&)
“Equation 1 is now:
( )_ 2 2 2
flo;)= 0403 + 05,0 +a40), (6)
Assuming that plane stress conditions exist, equation 6 becomes:
f(o'ij)=asso'|22 )

Since agg is the only coefficient remaining in the above yield function, it may be arbitrarily set to

unity without loss of generality.
Constitutive relationship:

Using the concept of plastic work, the scalar coefficient dA may be given by [25]:
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Combining with the flow rule (equation 2):

i=2%. o o ©)

It can be assumed that the equivalent plastic strain is related to the equivalent stress by a power

law:

- —n 1
e’ =Ao (10)
Differentiating equation 10 and substituting into equation 9:
3 df , —n2 —
de! ==——Anc do 11
Y 20o ()

Equation 11 describes the relationship between the incremental equivalent plastic strain and the

incremental equivalent stress which follows the power law.
Equivalent stress and equivalent plastic strain

The equivalent stress may be defined in terms of the yield function f as [25]:
- 12
5o 3T (12)

Substitution of equation 7 into 12 (and assuming ags = 1) leads to:

o =30, (13)




Evaluation of de,,® using equation 2 yields:

de?, =(20,,)dA (14)

Substitution of equation 8 and 13 into equation 14 and rearranging gives:

— 3 (15)
de’ =3/3;a_'£,’;

Assuming that proportional loading exists results in:

el =—¢h (16)

Evaluating equation 11 for dg,P, assuming proportional loading, and using equation 13 yields:

" a7
et =(3)" Aoy,

Equation 17 is a constitutive relationship that may be used to characterize the plastic component
of composite off-axis behavior. The plastic shear strain in equation 17 is the tensorial plastic

shear strain, not the engineering plastic shear strain, y;,".

Off-Axis Tests

In the off-axis test, the tensile load is applied along the long axis of the specimen, which is
defined as the x-direction (Gxx), and the fibers are aligned at an angle 6 from the loading axis
(Figure 2). A stacked rectangular three-element strain gage rosette is mounted at the center of

the specimen with one gage aligned along the loading axis, another aligned 45° away from the

ki




first, and the third aligned 90° from the loading axis. The material shear stress (012) in the

composite may be related to the applied tensile load (oxx) by:

0,, = —cos(8)sin(0)o,, (18)

Similarly, the total shear strain (e2) in the material coordinate system may be related to the
strain gage strains by transforming the coordinates:

g!, =—cos(9)sin(8)e’, +cos(@)sin(B)e}, + lcosz(e)—sinz(e)k;‘. (19)

where £, is the gage aligned along the loading axis (e« = &), &, is the gage aligned

transverse to the loading axis (g’ = €90+'), and &' is:

1 : 20
-3 =€ —5(8(; +£;0°) (20)

The experimental plastic strains can be calculated by subtracting the elastic strains from the total
strains. The elastic shear strain (€;2°) may be calculated as a function of shear stress (Gy2) using
an assumed value of the shear modulus G, (see Table I):

-
En =

2G,, (1)

Once the plastic tensorial shear strain-is determined, the effective plastic strain for the off-axis
test may be calculated using equation 16. The effective stress/effective plastic strain curves for
each of the off-axis tests can be plotted together, and a power law curve can be fitted to the
resulting data using equation 10. The data obtained from different off-axis conditions should be

very close to each other and the fitted master curve. The constants A and n determining the
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master curves should describe the plastic behavior of the particular fabric composite material

under any plane-stress biaxial loading.
3. Experimental Setup and Results

Material

The material used in the experimental part of this study was a fabric graphite/PMR-15
composite. The specimens were machined from two composite plaques fabricated at the NASA

Lewis Research Center per the following specifications:

Fabric: T650-35, 8HS cloth (v = 58-60%) =

Ply Arrangement: warp-aligned, 16-ply with floating undulations (crimps)

Cure: simulated autoclave and postcure (General Electric specifications)
Q/A: C-scan (exceptional density, uniformity)

Dimensions: 305 mm X 305 mm X ~5 mm

All of the specimens were selectively cut and the material inside the C-scanned edge effect

boundary was examined for uniformity before being used.

Off-Axis Tests

Off-axis tensile tests were performed in order to determine the elastic-plastic properties of the
fabric graphite/PMR-15 composite material. The specimens were machined from the plates as
described above to the dimensions recofnmended by ASTM D3039-76 [31] for 6 = 15°, 30°, and
45° (1 éach). The specimens were 220.5 mm long and 24.5 mm wide with an “as received”
thickness of about 5 mm. Three-element rosette strain gages were mounted in the center of the
specimen (Measurements Group WK-06-060WR-350) aligned as described above. Aluminum
tabs were used at the gripped portions of the specimen to prevent specimen crushing due to the
serrated (diamond-faceted) grips. A 15° tapered angle was included on the tabs to minimize
stress concentrations at the tab-specimen interface. The tabs were 38 mm long, 24.5 mm wide,
and 3 mm thick. A hardened steel pin was tightly placed through the tabs and the specimen in

order to prevent sliding at the interface and specimen slipping. The tabs were also adhered to the

10
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specimen using epoxy in order to eliminate rotation of the tabs about the pin. The tests were
performed on a servo-hydraulic MTS 880 with hydraulic grips and a displacement rate of 0.5

mm/min. All specimens failed in the gage section away from the gripped areas.

The stress and stain data required for the determination of the master curve were obtained from
three off-axis tests (one test per angle). The effective stress/effective plastic strain for each test
is plotted in Figure 3 along with the fitted master curve. Clearly, a single master curve
accurately describes the behavior of the fabric composite subjected to the different off-axis tests.
The parameters for the master curve are A = 5.22x10® and n = 2.27. These parameters are for

the unit-less tensorial shear straivn and stress in MPa.
JTosipescu Shear Test

Two Iosipescu specimens were machined to the dimensions suggested by the ASTM standard
[10]. The same strain gages used for the off-axis tests were mounted on both sides of both
specimens to measure shear strain. The biaxial Iosipescu test fixture was used [32] with loading
blocks that are the same dimensions as that suggested by the ASTM standard. The same testing
machine was used as with the off-axis specimens. Load and displacement data were taken up to
about 5.5 and 6.0 mm fixture displacements. However, the strain gages failed at fixture
displacements of about 1.0 and 1.5 mm for the two tests. Therefore, the complete load-strain
curves up to 5.5 mm displacement could not be obtained. The gages decoupled due to extensive
out-of-plane deformation of the specimen surfaces in the gage sections. The shear stress was
calculated by dividing the applied fixture load by the cross sectional area between the notches of
the specimen. The shear strain was measured by taking the difference of the two gages mounted
at 45° angles to the vertical axis on each side of the test section, and then averaging over both

sides of each specimen..
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4. Finite Element Modeling

Two non-linear finite element models (off-axis tensile test and Iosipescu shear test) were created
in order to examine the effect of material non-linearity on the specimen respbns;e. Both models
assumed geometric non-linearity and material non-linearity. The Iosipescu model also assumed
boundary contact non-linearity between the specimen and loading blocks. The resulting
numerical load-displacement and load-strain data can be directly compared to the experimental
results in order to determine if the plasticity model outlined in section 2 can accurately describe
the composite behavior for a shear-dominated biaxial stress state generated by two entirely

different testing procedures.
Tosipescu Shear Test Model

The finite element model of the Iosipescu shear tests simulated the loading conditions of the
modified Wyoming fixture and the .fixture recommended by the ASTM standard. The
computations were performed using ANSYS 5.4 [33]. The model is two-dimensional (having a
thickness of unity, i.e. Imm) and uses isoparametric elements with 6 and 8 nodes (PLANE2 and
PLANES?2, respectively). Point-to-surface contact elements (CONTAC48) were used to simulate
sliding between the loading blocks and the composite specimen with a friction coefficient of p =
0.3. This friction coefficient was chosen based on an expected value of a static friction
coefficient between steel loading blocks and a graphite-reinforced polymer composite (see table 1
for elastic properties of the steel loading blocks and the composite material). It has beeﬁ
previously shown that the effect of changing the friction coefficient is negligible for

unidirectional composite Iosipescu specimens within the range of 0.1 to 0.5 [13,14].

The mesh and boundary conditions used in the analysis are shown (Figure 4 a&b) with a
deformed finite element representation of the specimen. The specimen center was constrained
against vertical and horizontal displacements (u, and uy = 0). The blocks on the right side of the
specimen had prescribed displacements of u/2 and the blocks on the opposite side were loaded
by a negative displacement of the same magnitude. Thus, the total prescribed displacement

acting on the specimen was equal to u. The total reactions from each node on the right loading
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blocks were summed (this is equal to the load as read by a load cell in the experiment). Also,
shear strains were calculated at the center of the specimen using the nodal displacements

(modeling the three-element rosette strain gage).

The loading procedure for both models was divided into a minimum of 40 load steps. Each load
step had a maximum of 25 equilibrium iterations, and during each iteration the SRSS (the square
root of the sum of squares) of the imbalance forces were calculated. The force convergence
criterion was assumed with the SRSS of the imbalance fc;rces smaller than 0.1% of the SRSS of

the loading forces.
Off-Axis Tensile Test Model

The model of the off-axis tensile test is three-dimensional and uses isoparametric 10 node
tetrahedral elements (SOLID92) (see Figure 5). The off-axis specimen has one plane of
symmetry in the plane of the thickness (z = 0). The gripping tab is modeled as aluminum and
perfectly bonded to the composite specimen. These assumptions are consistent with the

experiment (see experimental section). The assumed elastic properties can be found in Table L.

The boundary conditions used the analysis are shown in Figure 5. The backside of the specimen
is constrained against displacements in the z-direction at each node in order to satisfy the
conditions of a plane of symmetry. Each node on the front face of the top tab is displaced in the
direction of the loading axis by w/2. The bottom tab has a negative displacement with an equal
magnitude. Thus, the total prescribed displacement acting on the specimen is equal to u. The
total reactions from each node on the top tab were summed and doubled (due to the plane of
symmetry), which is equal to the load as read by a load cell in the experiment. A numerical
strain gage was added at the center of the specimen to model a three-element rosette strain gage.
The strains were calculated from the displacements at each node in the gage and averaged. The

loading procedure is the same as that for the Iosipescu model. |
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Modeling Material Non-Linearity

Due to the current computational tools available to this research (ANSYS 5.4) there is a critical
limitation to the way elastic-plastic properties of anisotropic materials can be modeled. The non-
linear stress-strain curve for a composite material must be estimated with a bi-linear
approximation. The slope of the first line is the elastic pbrtion, and the slope of the second line

is the plastic portion. The point were the two linear curves intersect is defined as the yield

strength. This estimate must be input for the separate cases of pure axial stress along the three -

principal axes of the fabric composite, i.e. along each fiber direction and through the thickness of
the specimen. Also, this must be input for the three cases of pure shear. Clearly, this is not
strictly accurate for modeling the elastic-plastic behavior of either unidirectional or fabric
composite materials since there is no sharp cutoff between the elastic and plastic portions of the

stress-strain curve and the plastic stress-strairi behavior of composites is not linear but follows a

power law-type hardening curve.

A method was developed in this research to overcome this difficulty. The élastic-plastic
stress/strain response of the fabric composite material was approximated with a multi-linear fit as
input into the finite element code. The master curve was calculated for the case of pure shear,
and a series of bi-linear fits was fit to this curve, then averaged to produce a multi-linear fit that
estimated the master curve very closely up to a desired strain. The finite element model was
solved for each bi-linear fit and the resulting load, stress, and strain values were averaged. The
proposed method of multi-linear approximations is still not perfect, however, significantly better

than the bi-linear approximation technique.

For the numerical models the multi-linear fits were approximated with two different estimates.
The total strain range (plastic strain plus elastic strain) estimated was equal to that recorded
before the strain gages failed. A combination of 4 and 6 bi-linear curves were used to average
the curved line. This was done by taking 4 and 6 points along the master curve for pure shear
and optimizing the 4 and 6 curves so that their average at these points was the same as the value
of the curve at that point. This insured that the value of the average line closely followed the

master curve line between these 4 and 6 points. At the first approximation point one of the bi-
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linear lines changed its slope while the others maintained their original slope. At the next point
another bi-linear line changed its slope, and the second slope of the line that changed its slope at
the first approximation point was changed so that the average of all of the bi-linear fits was the
same as the value at the second approximation point. For each successive point, a bi-linear fit
changes to its second slope, and the second slope of the bi-linear fit that changed its slope in the
previous point is adjusted to maintain the average so that it is equal to the master curve at that
approximation point. Thus, with 4 and 6 approximation points there are 4 and 6 bi-linear fits,
respectively. Also, for 4and 6 approximation points there are 5 and 7 total slopes to estimate the -
master curve with, respectively. Since this was only done in the case of pure shear, each bi-
linear fit assumed a different value of the shear modulus (the axial moduli and poison’s ratio are
the same as shown in Table I). Occasionally, it is impossible to maintain the average at each
point, and the process must start over with different original slopes before the first approximation
- point for each bi-linear fit. The approximation points were concentrated at the smaller strains in
order to give a better estimate of the higher amount of curvature'in this range of the power law
estimation for a given total strain range. Figures 6 and 7 show the master curve in pure shear
with the bi-linear approximations and the average for the cases of 4 and 6 approximation points.
This procedure was repeated for the case of large shear strains (as experienced by the Iosipescu
specimen after the strain gage fails). The master curves in pure shear with bi-linear

approximations for this case are shown in Figures 8 and 9.

Table II lists the percent errors associated with each estimation of the master curve. The error is
defined as the absolute difference of the integrated areas of the master curve and the multi-linear
curve generated by the averaged bi-linear approximations, and is computed analytically. The
percent error is the error divided by the total area of the master curve. As expected, the
approximations with 4 bi-linear fits have a higher percent error than with 6 bi-linear fits for the
small and large strain cases, although they are both very small. If the bi-linear (single)

approximation technique had been used these errors would have been significantly larger.
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5. Results and Discussion

Numerical and Experimental Off-Axis Tests

Figures 10 to 12 present the experimental and numerical tensile stress and total tensile strain (Gyy
Vs. €x) curves for the three different off-axis tensile tests. The three numerical curves on each
plot correspond to the assumption of linear-elastic material behavior and elastic-plastic behavior
with 4 and 6 approximation points. Table II lists the percent error associated with each loading
angle for both elastic-plastic approximation points. In this case, the error is defined as the
absolute difference of the integrated areas of the experimental curve and the numerically
estimated elastic-plastic curves. The percent error is defined as the error divided by the area
under the experimental curve. This was calculated by fitting'6th order polynomials to each of

the curves. It was observed that the error of the curve fit was insignificant compared to the

errors between experimental and numerical results.

It is clear from Table II that the percent error of the elastic-plastic numerical models for both
approximation points and for each loading angle is very small relative to the total area under the
experimental curves. It can also be seen in Figures 10 to 12 that the elastic-plastic models
predict the material behavior much more accurately than the numerical linear-elastic model. In
fact, the assumption of a linear-elastic material response results in axial stresses that are about
twice as large as those measured experimentally. The percent errors listed in Table II indicate
that for the 45° off-axis test, the 6 point approximation generates a smaller error than the 4 point
approximation, which is expected, keeping in mind that both errors are very small. For the 15°
and 30° off-axis tests, the 4 point approximation actually is more accurate than the 6 point
approximation. Since both errors are still relatively small, this indicates that the 4 point
approximation is accurate enough to model the plastic behavior of the material, and adding more

approximation points does not significantly improve the accuracy of modeling the off-axis

experiment.
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Numerical and Experimental Iosipescu Shear Test

Figure13 presents the experimental and numerical shear stress/strain (Tyy Vs. 'ny‘) curves for the
Tosipescu shear test in the range where the experimental strain gages are valid. At higher fixture
displacements, the strain gages either break or de-bond from the specimen. The shear stress Tyy
is computed by dividing the applied fixture load by the specimen cross-sectional area, and the
total engineering shear strain is computed using the strain gages. The three numerical curves on
each plot correspond to- the assumption of linear-elastic material behavior and elastic-plastic
behavior with 4 and 6 approximation points. Table II lists the percent error associated with the
small strain case for both elastic-plastic approximation points. The percent error is defined and

calculated the same way as for the off-axis experimental/numerical errors.

It is clear from Figure 13 that the elastic-plastic numerical model approximates the experiment
(two experimental curves obtained from two independent Iosipescu tests) much more closely
than the linear-elastic numerical model. However, the 4 approximation point elastic-plastic

model slightly underestimates the experiment, whereas the 6 approximation point elastic-plastic

model underestimates the experiment to a larger degree. One would expect the 6 point

approximation to model the experiments more closely because the error between the master
curve and the multi-linear approximation is smaller in the case of 6 points than for the
approximation with 4 points.. This might indicate that a proportional relationship between the
input bi-linear curves (mechzinical properties) and the output bi-linear curves (numerical results)
does not exist. In Figures 6 and 7, it can be seen that the bi-linear curves for the 4 point
approximation have a smaller range of initial and secondary slopes that are close to the averaged
approximation, and the 6 point approximation curves have slopes that are relatively small and
large compared to the average. Since the relationship between the input and output bi-linear
curves is not proportional, this would cause the 6 point approximation to have a greater error in
the final numerical calculation. From this data, it can be deduced that for the small strain
numerical computation of the Iosipescu specimen the 4 approximation point technique is good
enough to model the specimen behavior accurately. The accuracy would be improved if the
slopes of the bi-linear curves (used as mechanical properties) have a smaller range of initial and

secondary slopes.
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Figure 14 shows the experimental and numerical shear stress/fixture displacement curves for the
same experiments. Since large displacements can be monitored throughout the test (up to about
6mm) unlike the strain gages, this figure represents the entire test performed. The numerical
calculations in this case correspond to the linear-elastic and the elastic-plastic with 4 and 6
approximations for large strains. Again, the shear stress is calculated by dividing the fixture load
by the specimen cross-sectional area. Figure 15 is the same plot as Figure 14, but focused on the
lower stress values in order to emphasize the difference between the experimental curve and

elastic-plastic numerical model.

From Figure 14, it is clear that the linear-elastic approximation of the stress/diéplacement curves
is very inadequate, and the elastic-plastic approximations are much more accurate. The two
elastic-plastic approximations are very close to each other, however the same trend can be
observed as described for the case of the small strains described dbove. The approximation that
is averaged from bi-linear curves that have a larger difference in slopes tends to predict lower
stresses than the approximation with bi-linear curves that have slopes closer to the averaged
Acurve. In this case, the 6 point approximation has bi-linear slopes that afe closest (Figures 8 and
9), and the stresses in the numerical Josipescu computation are somewhat higher than those of

the 4 point approximation.

It can also be observed in Figure 14 that even though the elastic-plastic numerical
stress/displacement curves are much closer to the experimental curves than the linear-elastic
computation, it still overestimates the experimental data significantly. A magnifications of this
can be seen in Figure 15. It is evident that the approximation is relatively close to the
experiment up to about 1.5 mm fixture displacements (considering that this is a numerical
approximation for large strains) but deviat:: significantly for large displacements. Searles er al.
[3] showed that for this same composite, interlaminar damage in the Iosipescu specimen begins
to occur at a fixture load and displacement of about 100 MPa and 1.5 mm, respectively. Figure
16 (Figure 14 from Searles et al. [3]) shows the répid progression of interlaminar damage that
occurs at the maximum load. It can be seen in Figure 15 that the point at which the elastic-plastic

estimation begins to deviate from the experiment corresponds to the rapid development of
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interlaminar damage in the Iosipescu specimen caused by shear and compression from the

loading blocks.

The reason why the elastic-plastic model deviates from the experiment near the maximum load is
because it is characterized based on the off-axis tension tests that are effected very little by
interlaminar damage. Even though interlaminar damage does occur in the off-axis tensile tests
(see Figure 17), its influence on the non-linear behavior of the material is very small in a
combined shear/tension stress state. From Figure 17, it is evident that even though bundle
rotation occurs which causes damage, the interlaminar cracks are forced to remain closed due to
extensional-bending coupling while the specimen is loaded. Since the closed cracks are parallel
to the applied load, further damage propagation due to interlaminar crack growth is prevented.
The out-of-plane bulging in the off-axis specimen in Figure 17 is not visible when the specimen
is loaded. Upon unloading, the interlaminar cracks prevent the specimen from holding its
original shape and thus bulging occurs. In the Josipescu specimen the interlaminar damage is
significant because of a shear/compression state of stress that exists in the gage section. This
state of stress forces the interlaminar crack to open and propagate rapidly. Therefore, the master
curve that was developed based on the off-axis tension tests does not include the information
related to the interlaminar damage, and cannot properly predict non-linear behavior of the fabric

Josipescu specimens developing large interlaminar damage zones in their gage sections.

Searles et al. [3] assumed that the shear stress in the fabric Iosipescu specimens calculated using
the applied fixture load divided by the cross-sectional area of the gage section of the specimens
was similar to the actual internal shear stress in the specimen. The shear stress calculated from
the linear-elastic model of the test with friction and geometric non-linearity was not used since it
was suspected at that time that this could grossly overestimate the shear strength of the
composite. Therefore, it was assumed that the shear stress at the point where significant non-
linearity began near the maximum load (rapid interlaminar damage development and
propagation) could be defined as the shear strengfh of the composite calculated from the load
divided by the cross-sectional area. In order to investigate the validity of this assumption, the
internal stresses along the notch root axis were numerically calculated for the maximum load

(fixture displacement = 1.5 mm) of the Iosipescu specimen using the elastic-plastic model with
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the 4 point approximation. Figure 18 shows the calculated internal stresses (longitudinal and
transverse normal stresses Ox and oy and the shear stress oyy) along the notch root axis of the
specimen. It can be seen that the shear stress is very uniform along the notch root axis, and the
shear stress calculated using the load/area approach is very accurate. It is also clear that not only
are all three stress components relatively uniform along the notch root axis, but the normal stress
components are very small with respect to the shear stress component. This means that there
should be very little influence of the normal stresses on the initiation of the interlaminar damage

in the composite material. The compressive stress oy, however, must have a strong effect on the
interlaminar damage propagation. This could be the reason why the experimental load-
displacement curves for the Iosipescu fabric composites at large displacements are so flat. Even

relatively small compressive stresses in the gage section of the specimens will enhance the

interlaminar damage propagation process.

It has been shown in this research that the apparent shear strength of the fabric composite can be
defined by the maximum applied fixture load divided by the cross-sectional area. Since the
normal stress components are significantly smaller than the shear stress in the gage section they
should have almost no effect on the initiation of interlaminar damage which determines the
strength of the composite when subjected to shear. Moreover, the shear stress field along the
notch root axis appears to be very uniform with small reductions near the roots of the notches.
~ All of this means that the use of correction factors and/or failure criteria are unnecessary, and no

stress concentrations along the notch root axis need to be considered.

Conclusions

It is well known that woven fiber reinforced polymer matrix composites tend to exhibit
significant material non-linearity when subjected to shear loads and negligible material non-
linearity when subjected to loads parallel to the fiber reinforcement. Therefore, when
numerically modeling and experimentally determining shear-dominated biaxial properties of
woven composites, it is important to consider the non-linear material behavior. In this research,
it has been shown that by using a time-independent, macroscopic, homogeneous plasticity model

for woven fabric composites, it is possible to predict the non-linear response of these structures
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under shear-dominated biaxial loads. Once the model has been characterized for a specific
woven composite material, it can be used in a comprehensive non-linear finite element analysis

to determine the mechanical response of any structure based on these materials.

A series of off-axis tests of a 8HS woven graphite/PMR-15 composite material has been
performed to characterize the elastic-plastic model. It has been shown that the model can
accurately predict the response of the material under axial tension/shear biaxial loading
conditions in the off-axis experiments, and it can also predict the mechanical response of the

woven Iosipescu specimens up to the point of significant interlaminar failure.

Using the newly developed, fully non-linear finite element model of the woven Iosipescu
specimens the shear strength properties of woven composites can be experimentally determined.
The shear stress calculated by taking the applied fixture load at failure and dividing by the cross-
sectional area of the specimen is the same as the shear stress along the notch root axis of the
specimen obtained from the non-linear analysis. The linear-elastic approach overestimates the

shear strength of the composite determined from the Iosipescu test by a factor of at least three.
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Captions

Table 1.

Table I
Figure 1.
Figure 2.

Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.

Figure 9.

Mechanical properties of the 8-HS woven composite matérial, steel loading
blocks, and aluminum tabs.

Percent errors of the multi-linear approximations and the numerical results.
Solid model of the 8-harness satin woven architecture.
Off-axis tensile test with material and global coordinates shown.

The effective stress-effective plastic strain diagram with the experimental off-
axis data and the master curve.

Finite element model showing (a) the boundary conditions and nodes and (b)
the deformed mesh.

Finite element model of the off-axis test showing the mesh and the boundary
conditions. :

Shear stress-total shear strain diagram (for small strains) of the master curve, 4
bi-linear approximations, and the averaged multi-linear curve.

Shear stress-total shear strain diagram (for small strains) of the master curve, 6
bi-linear approximations, and the averaged multi-linear curve.

Shear stress-total shear strain diagram (for large strains) of the master curve, 4
bi-linear approximations, and the averaged multi-linear curve.

Shear stress-total shear strain diagram (for large strains) of the master curve, 6
bi-linear approximations, and the averaged multi-linear curve.

Figure 10. Axial stress-total axial strain diagram of the 15° off axis test.

Figure 11. Axial stress-total axial strain diagram of the 30° off axis test.

Figure 12. Axial stress-total axial strain diagram of the 45° off axis test.

Figure 13. Shear stress-shear strain diagram of the Tosipescu test for a small strain.

Figure 14. Shear stress-shear strain diagram of the Tosipescu test for a large strain.

Figure 15. Same as Figure 14 for small shear stresses.
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Figure 16. Damage zone development at the notch root of a graphite/PMR-15 Josipescu
specimen at (a) aload of 5338 N, (b) a load of 6450 N, and (c) the maximum

load [3].

Figure 17. Side view of a tested off-axis tensile woven graphite/PMR-15 specimen
showing the interlaminar damage.

Figure 18. Numerically determined internal stresses along the notch root axis of an
Tosipescu test specimen. Also shown is the shear stress as calculated by
dividing the numerical load by the specimen cross-sectional area.




T650-35/PMR-15 Steel Aluminum
_ 8HS woven composite Loading Blocks Tabs
Axial Moduli (Gpa) Eyy=E»=79 E =200 E=74
Esp =15
Shear Modulus (Gpa) Gyp=75 G=75 G= 28
Poisson's Ratio vy = 0.15 v=0.33 v =0.33

Table I




Master Curve Error Experimental/Numerical Error
approximation small large 15 degree 30 degree 45 degree losipescu
points strain strain off-axis off-axis off-axis small strain
4 1.26 % 1.62 % 153 % 0.81% 10.48 % 8.15%
6 0.34 % 4.01% 2.01% 3.57% 22.40%

0.53 %

Table II
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MICRO-AND MESOMECHANICS OF 8-HARNESS SATIN WOVEN
FABRIC COMPOSITES: I - EVALUATION OF ELASTIC
BEHAVIOR |

K. Searles*, G. Odegard** and M. Kumosa**!
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2390 South York, Denver, CO 80208, USA

Abstract

In Part I of this two-part paper, simplified two-dimensional micromechanics and
mesomechanics models have been introduced to predict the elastic behavior of 8-harness
satin (8HS) woven fabric composites. The woven warp and fill tows were independently
treated as unidirectional composites and composite cylinder assemblagé (CCA) theory was

adopted to predict tow elastic properties from constituent fiber and matrix properties. Since

evaluation of woven lamina stiffness requires an accurate description of tow geometry, a

method was also developed to describe arbitrary tow geometries'by mathematically fitting
cubic splines and/or polynomials to micrographs of composite cross-sections. Finally,
classical lamination theory was introduced to determine the overall elastic behavior of an
n-layered composite laminate, assuming the woven lamina was a modified, two-layer

laminate.

! To whom correspondence should be addressed.
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The simplified mechanics model was evaluated using results from numerical strain
energy and equivalent force approaches and results from a series of experimental losipescu
shear tests and off-axis tensile tests on T650-35(3k), 8HS woven graphite-PMR 15
composites. Issues regarding exclusion of a matrix layer in the simplified, 2-layer laminate
analysis were addressed in the strain energy analysis of an idealized 3-D, representative
volume element. The mechanics model was found adequate in estimating the lower bounds
of 8HS woven fabric, composite elastic properties. The model also provided a reasonable

estimation of symmetric cross-ply composite properties.

1 INTRODUCTION

There has been a growing interest, particularly in the last 10 years, to use composite materials
in structural component applications primarily within the military and aerospace sectors.
Although these sectors drive the greatest use of composites on a percent weight basis, focus
is shifting towards expanding use in commercial applications where higher strength-to-weight
ratios, damage tolerance and near net-shapability are important considerations. Of the
numerous classes of composite material systems employed for use in structural applications
ranging from aircraft and space structures to automotive and biomedical applications,
unidirectional (UD) composite systems have received the most treatment. However, UD
composites are limited in applications requiring orthogonal reinforcement, increased intra- and
interlaminar shear strength, better impact resistance and near net-shapability over complex
geometries. Orthogonal woven fabric or textile composites overcome some of the

aforementioned limitations found in UD composites.

Woven fabric composites are formed by the process of interlacing two individual fiber
bundles or tows perpendicular to one another and impregnating with a matrix to forma layer.
Each layer is stacked in some desired orientation and cured to form a laminate. The crosswise
tows are referred to as fill or weft tows and the lengthwise weaver tows are referred to as

warp tows. The pattern of interlacing warp tows with weft tows is fundamental in defining

and classifying a two-dimensional (2-D) weave. In referring to a 2-D weave pattern, it is

useful to describe the type of pattern by the number of weft tows interlaced (n-1) within a

2

ki



given repeating unit or cell. Thus, a plain weave (n,= 2) interlaces every other weft tow, a
twill weave (n, = 3) interlaces after every 2™ weft tow, a four-harness satin (4HS, n;= 4) after
every 3%, a SHS (n,= 5) after every 4" and an 8HS (n, = 8) after every 7" weft tow. There are
several advantages associated with the tow interlacing such as increased intra- and
interlaminar shear strength, impact resistance and near net-shape part production. The
tradeoff with these benefits is the loss of in-plane strength and stiffness, which depends on the
number of fibers aligned within the plane of interest. Obvibusly, when micro- and mesoscale
geometric featl_n'es and processing parameters contribute to the overall mechanical behavior
of woven fabric composites, reasonaBle models are needed that account for this variation to

" provide sound design data.

The analytical and numerical treatments adopted for evaluating the performance of
textile structural, reinforcing composite materials are not as well established compared to UD
composite reinforcing materials. One reason the level of understanding has not reached the
maturity that it has for UD composites is purely due to composite material and processing
design evolution. Primarily though, a precise understanding of textile structural composite,
thermomechanical behavior is tied directly to the level of complexity. Behavior of these
composite architectures is dictated by a greater number of geometric and processing
parameters vis-a-vis UD composite architectures. Parameters such as fabric lamina structure
(weave style, tow density, fabric count, tow crimp, warp/fill tow characteristics) and fabric
laminate structure (lamina sequenée, lamina orientation, asymmetry, balance) greatly influence
the composite behavior under multiaxial loading, in-service conditions. Under such
conditions, these parameters may result in coupled interactions, thus complicating the nature
of the problem. Therefore, it is necessary to either account for as many parameters as
possible, or make reasonable assumptions/simplifications when developing analytical and
numerical techniques to analyze woven fabric composite behavior. What follows is anaccount

of analytical models found in the literature for analysis of woven fabric composite laminae.

Several researchers have addressed the need for computationally efficient analytical

models to predict the elastic properties and overall mechanical behavior of woven fabric
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composites, primarily plain weave composites. Ishikawa and Chou [1-3] have developed three
models (later modified by Raju and Wang [4]), viz. the mosaic model, the crimp or fiber
undulation model and the bridging model. The one-dimensional mosaic model idealized the
fabric structure as an assemblage of asymmetric pieces of cross-ply laminates by omitting tow
continuity and interlacing. Stiffness constants were evaluated based on the assumption of
either isostrain (parallel) or isostress (series) conditions. Variation in stress and strain near the

interlaced regions wasneglected and the model provided reasonable upper and lower bounded

solutions to in-plane stiffness constants.

The one-dimensional crimp or fiber undulation model extended the series mosaic
model to include tow continuity and undulation, but only in the direction of applied load. The
undulated tow was also treated as a single fiber, hence tow cross-sectional shape was
excluded. This model was particularly suited for fabrics with a minimal number of fill tows
per warp tow exchange (mp), such as defined by a plain weave. The stiffness constants
predicted by this model were lower than those predicted by the series mosaic model because
transformed, reduced stiffness was evaluated as a function of the local off-axis angle in the
filling direction. For satin weave architectures, the two-dimensional bridging model was
proposed and this rhodel was essentially écombination of the series and parallel models, again
with continuity and undulation considered only in the direction of applied load. For this
model, it was postulated that the regions immediatély surrounding either end of'the interlaced
region acted as load bridges and regions immediately adjacent had the same average mid-

plane strain and curvature. Comparisons made with experimental results for satin weave

composites showed good agreement.

Naik et al. [5-8] developed a two-dimensional model to account for fiber continuity
and undulation in both the warp and fill tow directions. The model idealized tow geometry
with equations of periodic functions that constrained a tow to conform to the mutually
- orthogonal tow. For plain weaves with a closed architecture, i.e. adjacent tows in contact, the
resemblance was a good match, however asymmetry resulted in open weaves if the gap was

not taken into account. Woven fabric lamina in-plane, elastic constants were determined by
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homogenization of through-thickness properties (from lamina slices cut off-axis or on-axis)

and assembling slices in a series-parallel (SP) or parallel-series (PS) fashion. The upper

bounded prediction of elastic moduli from the 2-D PS model was less than the parallel mosaic
model and greater than the series mosaic model, while the lower bounded prediction from the

2-D SP model was less than the series mosaic model.

To more accurately represent both the openand closed plain weave geometries, Walsh
and Ochoa[9] develoiaed arevised set of three-dimensional shape equations. Their model did
not constrain the tows to conform, thus the representation of the lamina by successive cross-
sections was symmetric and correct for open Weaves. However, the model did assume
periodic functions and lenticular (idealized), cross-sectional tow shapes exhibiting two-axis
symmetry. The mathematical moduli were homogenized with respect to the global coordinates
by through-thickness integration é.nd in-plane, average elastic properties were found by
‘simultaneous solutions to homogenization processes along the fill and warp directidns.
Comparisons to experimentally determined apparent properties for S-RIM, plain weave

composites showed quite good agreement.
1.1 One-Dimensional Characterization
The one-dimensional fiber crimp model considers continuity and undulation in the filling

direction with a cross-sectional slice at x= 0 described by the shape functions due to Ishikawa
and Chou (refer to Figure 1) as |
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The extension, extension-bending coupling and bending stiffness matrices, that is A;, B, and
Dj;, are evaluated by assuming that classical lamination theory is applicable to infinitesimal
slices of d, along the y-axis. This being the case, the extension stiffness matrix, as an example,
is found by integrating the in-plane mathematical moduli for each constituent through-
thickness. Over the range of 0<y < g , the summation of the average moduli with respect to

the local off-axis angle { gives A; according to the following equation from [1-3]:

W) K h() 2
4,6)= [ ofa+ AGER ([Qg’dz+ [ola @
:5’1 hx()’)"";t‘ h(y) (zz(y)'

where the superscripts M, F and W denote the matrix, fill and warp constituents. The local
off-axis angle is given by {(y) = arctan(dh,(y)/dy). The fill tow matrix of local mathematical

moduli is expressed in terms of the undulation angle in the filling direction and the constituent

tow elastic properties:
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where the following relationship holds:
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Expressions in the manner of Eq. 2 can also be written for the extension-bending coupling and
bending stiffnesses over all regions. The expressions for the A;, By, D; stiffnesses can be
expanded in terms of Jamina thickness and explicitly stated for 0 <y < % as
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1.2 Two-Dimensional Characterization

The two-dimensional series-parallel (SP) and parallel-series models (PS) consider fiber
continuity and undulation in both the warp and filling directions. Referring to the weave
cross-sections (X-Z, Y-Z) shown in Figures 2 and 3, the regions a, to a; and b, to bs are given
by Naik ef al. as follows:

9 =%(awap_uﬁll); 2} =%awan; 2} =%(a\vmp+gwar); a4 ='§ (awar) +gwar;; 2 =%(awwp+uﬁll) +gwmz
(6)

b =%(aﬁll -uwar,); b, =% agy; by =% (aﬁII +g ﬁll} b, "_'%(aﬁll)'l'g i Bs =% (aﬁll '*'uwar) +g ﬁII-




The two-dimensional shape equations are determined by taking through-thickness slices of

a plain weave unit cell across the warp tow (Y-axis @ y = 0) and across the fill tow (X-axis

@ x = 0). The shape equations are written to idealize the geometry of the on-axis fill tow or

off-axis warp tow according to periodic functions in terms of the bounds described byregions

in Eq. 6. The functions constrain the geometry of the on-axis tow to follow the off-axis tow,

which is suitable for closed-gap architectures. These functions due to [6] are given by

( | h
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_ h ~h
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- Since the geometry of mutually orthogonal tows of the plain weave are constrained to
conform as given by Eq. 7, it is expected that the local off-axis angle of undulation for the

warp tow is identical to the derivative of the fill tow undulation. With this, the local off-axis

angle of undulation for the warp tow is given by
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The extension, extension-bending coupling and bending stiffnesses are evaluated from
the mathematical modﬁ]i for each constituent of the infinitesimal (dx or dy) slices, identical
to the procedure outlined for one-dimensional characterization. The SP approach then adopts
a two-step assembly scheme to determine the elastic constants of the plain weave, fabric
lamina. First, all infinitesimal, through-thickness slices along the applied loading direction (on-
axis) are assembled assuming an isostress condition. Second, all cross-sections on-axis are
assembled assuming an isostrain condition. Accordingly, the average, in-plane compliances

on-axis are found from {6]

Byarpt8warp

3] )5/ 1] 0)= ey + 80 ) [, )0, (00D, (D) )

0

giving an upper bounded approximation for each section. Here, the extension-bending
coupling compliance is prescribed as zero for the plain weave architecture. The average, in-
plane stiffness constants are found by integrating the inverted, average compliances from Eq.

9 with an isostrain condition according to

Qant+8pan

450D =l rea)’ [TOFLODN0 00
' 0

where the integrands represented a lower bounded approximation due to the inversion of the
upper bounded compliances. Likewise, the assembled extension-bending coupling stiffness
is also prescribed as zero. Alternatively, the PS approach merely reverses the order of

integration (assembly) in the SP scheme to determine the elastic constants.




1.3 Three-Dimensional Characterization

The main difference in the approach due to [9] is in defining the shape equations based on
periodic functions that describe the tow centerline and tow perimeter explicitly, thus avoiding
constrained tow geometries and asymmetry in open gap, plain weave architectures. Here, the
gap defined by observations of micrographs from S-RIM composite cross-sections is

accounted for in terms of the period of undulation given by an idealization of the mutual tow.

4 Sill = 2(awarp + g warp )
g (11
Wwarp = 2(aﬁll +g ﬁll)

Since the period y of each tow undulation is independently defined in terms of the off-axis
tow width a and gap g, the local off-axis angle of undulation for the warp tow is not identical
to the derivative of the fill tow, hence the orthogonal tow geometries are not constrained to
conform. Inarriving at the shape equations that describe the upper and lower warp or fill tows
independently of each other, the tow centerlines are modeled according to the prescribed

height of the off-axis tow. The cosine functions describing the centerlines &g, and Earp aTE

given by
S pu =—( ez ]cos 2n(x - a,)
2 Y s

=

2 Y warp

(12)

A comparable set of cosine functions, referenced from the centerlines, describe the orthogonal
tow cross-sectional perimeters bounded by the regions 0 to (Qyarp * 8uarp) and 0 to (ag; + gp).
A process similar to that described for two-dimensional characterization is adopted for
evaluating the elastic constants once the shape functions and local off-axis undulation angles
have been established. As noted by Walsh, this method does not inadvertently force larger

local angles of undulation for open architectures where increasingly smaller undulation angles
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are expected due to the presence of a gap between adjacent tows. In other words, an open
weave architecture is not prescribed to follow the same geometry as a closed weave
architecture. Because of this, a more accurate estimation of the off-axis stiffness leads to
greater accuracy in predicting the remaining in-plane, elastic constants for the plain weave
laminae.

1.4 Numerical Schemes

Several numerical models have also been proposed to predict the elastic properties and
overall mechanical behavior of plain weave fabric composites. Zhang and Harding [10]
developed a model based on the finite element method for micromechanics analyses and
principle of strain energy equivalence. Although the plain weave fabric lamina was modeled
considering undulation in one direction, it was suggested that a two-dimensional case should
be considered. A more representative case of the actual plain weave unit cell was developed
by Blackketter et al. [11] The tow cross-sectional aspect ratio, obtained from micrographs,
was included in the finite element model and the observed fiber volume fraction was obtained
by iteration. Tows were assumed to conform perfectly to each other, resulting in a
mathematically continuous model. An incremental iterative finite element algorithm was
developed to analyze tensile loading responses, shear loading responses and estimate the

effects of démage by stiffness reduction.

Extensive work on 2-D and 3-D finite element analyses of plain weave fabric
composites has been done by Whitcomb et al. [12-14] A new 2-D finite macro element was
developed and évaluated to account for element spatial variation of material properties.
Detailed stress analyses of plain weave fabric composites were also performed using a
global/local finite element method. It was found that surface stress distributions differed from
internal stress distributions and failure behavior was influenced by a geometric feature defined
as the tow waviness ratio. Effective elastic moduli were also found to be sensitive to the tow
waviness ratio and increasing tow waviness in plain weave composites, subjected to uniaxial

tensile loads, resulted in initial failure due to high transverse normal stress. In this case, the
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particular failure mode was 0° fiber tow separation. When the tow waviness decreased, the

initial failure mode was 0° fiber tow fracture from high longitudinal stress. The deformation
behavior also tended towards that of cross-ply laminates.

The objectives of the current work are twofold: 1) develop a simplified two-
dimensional micro-to-mesomechanics model suitable for estimating the elastic constants in
8-harness satin woven fabric composites, based on random tow cross-sectional Shapes and
tow arrangements lacking contiguity; 2) assess the validity of the simplified mechanics model
by comparing the estimations to those obtained from 3-D finite element based, strain energy
analyses and mechanical testing. The simplified mechanics model assumes that the woven 8HS
fabric lamina may be treated as a 2-layered laminate if the micromechanics analysis is carried
out using the woven fabric tow average V. The finite element model represents an idealized
volume element (IVE) from a fabric unit cell and the IVE V,is reached through an iterative
process. A modified Iosipescu shear test [15-21] standard tension and off-axis tension tests

[22] are used to determine the apparent composite elastic properties.

2 WOVEN 8HS GEOMETRY

As previously mentioned, there are several 2-D weave architectures for woven fabric
composites. The simplest of patterns, the plain weave pattern, characterized by a one-
over/one-under interlacing, reduces the composite stiffness and strength due to the frequent
éxchanges of tow positions from top to bottom. There are other patterns that reduce the
number of exchanges and increase the length of the straight segments referred to as the
“float”. Of particular interest to the aerospace structural groups are the satin Weave
architectures, especially the eight-harness sat‘in or 8-HS woven architecture. Since exchanges
are minimal and the float is longer, the composite affords the opportunity to be formed into
complex shapes (drape) while still providing a certain degree of mutually orthogonal
reinforcement. A geometric feature unique to satin architectures is that of lamina asymmetry.
There are predominantly warp tows on one side of the lamina while the other side is

predominantly weft tows. The tow bends and interlace locations are also asymmetric, leading
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to coupling between extension and bending as well as coupling between extension and in-
plane shear, i.e. By/D; # 0. Laminate symmetry and quasi-isotropic laminate behavior may be
ascertained depending on the number of laminae considered and desired orientation during

the layup sequence.
2.1 Examination of Lamina Geometry

Most textile processes produce patterns that are periodic in nature. That is, the patterns of
interlaced tows or yarns repeat in one or two directions. The geometry and periodicity of a
textile is conveniently described in terms of unit cells. What is unique in this definition is that
the stress and strain distribution in a periodic textile composite is also periodic, provided the
external loading conditions are uniform. When the external loads are not uniform, periodicity
in the stress and strain distributions no longer exists. The term unit cell, borrowed from
crystallography, defines the requirement that the complete textile pattern can be constructed
from spatially translated copies of the unit cell without rotating or reflecting. The unit cell
representation for an 8-HS woven fabric lamina is shown in Figure 4. Examination ofthe 8HS
unit cell reveals that even further simplification is possible, leading to the smaller repeat unit
sub-cell shown in Figure 5. In the course of analyzing the composite lamina behzivior, it is
commonplace to choose a modified square boundary of equivalent area to the héxagonal
boundary for simplicity of calculation. By adopting the notation of Chou [23], the equivalent
sub-cell major dimensions are given as:
hexagonal dimensions: (3a) x (3a)
simplified square dimensions: (V8a) x (V8a)

where a is the width of the warp or weft tow. In addition to boundary generalizations,
calculations are often reduced by assuming tow cross-sections of the following shapes:
rectangular, perfectly elliptical and lenticular, i.e. shaped like a biconvex lens. The strain

energy analyses presented in this paper assume the model geometry within the larger repeat

unit, but the simplified mechanics approach does not idealize the tow cross-sectional shape
as lenticular and symmetric. The model geometry is employed using the simplified dimensions

only to facilitate ease in application of suitable prescribed displacement boundary conditions.
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2.2 Woven Tow Cross-Section

Evaluation of woven composite lamina and laminate stiffness requires an-aceurate description
of the woven tow geometry, including both the woven tow cross-section and tow centerline.
Rather than assuming an idealized geometry described in terms of complimentary functions
that force contiguity between the warp and fill tows, the particular shape of the 8HS woven
tow cross-section obsérved in SEM micrographs (Figure 6) may be described by specific
rational B-splines and polynomial functions where z = f{x or y), depending on the tow
considered. Ifa given threshold? level is applied to the micro graph of the lamina cross-section,
a binary image can be rendered that separates the tows from the matrix suﬂibiently to allow
for boundary digitizing. As shown successively in Figures 7a and 7b, this technique permits
anaccurate tow rendition and recording of coordinate pairs ([x, z] or [y, z]) of points selected
around the perimeter of the tow. The mathematical representation of the particular shape of
a reproduced tow cross-section retains somewhat better accurécy if the perimeter is halved
about an imaginary axis through the geometric center or centroid as given by

Ix dA I zdA

4 z=4 (13)
Jao o fas

A A

X =

where x represents the x-coordinate of the warp tow centroid and the numerators are
formulations of the “first moment” of the area element dA about the z and the x axes,

respectively. The relationship is similar for locating the fill tow centroid.

Once the coordinate pairs are established for the upper and lower half of the tow
cross-section (with respect to the centroid), the points can be joined using a piecewise

polynomial interpolation method such as spline interpolation. The simplest continuous

2

Thresholding implements an algorithm to select all regions of pixels having similar contrasts and applies
the same color level to these regions, either black or white in the case of a binary threshold. Levels of
threshold are determined by locations on a histogram range from 0-255.
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polynomial approximation would be by piecewise linear functions. However, corners would
exist that are not representative of the actual tow cross-sectional shape. More practical,
natural-ended, cubic splines p(x) are adopted to join the points along the perimeter and are
given by cubic polynomials of the following form:

p,(x)=a; +a, (x - xj)+ a2 (x - xj)z +a;; (x - xj)3 14)

Cubic splines on an interval a < x < b corresponding to the space between two points or

nodes have, by definition, continuous first and second derivative everywhere in that interval.

The cubic polynomial coefficients are determined using Taylor’s formula to obtain

237 =p(xj)=fj

I
>

ap=p; (xj) j

(15)

aj3=_pj( ) (f f,+1) (1+1+kj)

The strain energy minimization by using splines to fit curves through points is proportionate
to the square of the second derivative of the spline. Curve fits chosen by natural splines result
in a linear graph of the interval endpoints because natural splines are functions that result in

the integral tending towards zero as follows:
b
jp”(x)z dx—>0 (16)

2.3 Woven Tow Centerline

The geometric description of the warp or fill tow centerline is approached in the same manner
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as the description of the tow cross-section. An appropriate threshold level is applied to an
- SEM micrograph of the lamina or laminate edge (see Figure 8a), rendering a binary outline
of the woven tow path as it passes over or under a mutually orthogonal tow (fill). To arrive
at coordinate pairs for points representing the tow centerline, the path thickness represented
by Figure 8b must be divided evenly along the path with respect to an imaginary axis through
the geometric center of the orthogonal tow. By advancing in increments along the path and
determining the new centroid at each increment, the difference between z-coordinates of the
upper and lower digitized points (path perimeter) yields a new point that coincides with the
centroid. Necessarily, the tow centerline and geometric center of the tow should be identical.
Piecewise polynomial approximations for natural-ended splines that satisfy Eq. 16, as

previously described, are also used to connect the centerline points in a continual fashion.

2.4 Woven Tow Surfaces

Once the particular geometry of the woven tow cross-sections and centerlines is known,
upper and lower tow surfaces may be accurately described by two-dimensional
approximations in terms of z = f{x, y). Additionally, rendition of tow volumes is possible by
extruding either the warp or fill tow cross-section along the path defined by its mutually
orthogonal centerline. At this stage, it also possible to delineate the adjacency of neighboring
tows in both closed and open weave architectures and characterize the requisite lamina and
laminate volume fractions. Figure 9 displays such an arrangement of upper fill tow surfaces
created from two-dimensional, piecewise approximations with the local off-axis angle of
undulation given as & and in-plane dimensions defined according to reduction of the 8HS

woven unit cell.

The simplest case of describing the lamina geometry assumes that the lower fill tow

surfaces are reflections of the upper fill tow surfaces along the z-axis, and the resulting set of
fill tow volumes is a reflection of the mutual warp tow volumes rotated 90° about an
imaginary z-axis (through the interlace). Although it is certainly plausible that variations in

tow cross-sections arise from the manufacturing process, inaccuracies in lamina stiffness
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calculations are trivial compared with those stemming from discrepancies in constituent

properties and volume fractions.
3 MICROMECHANICS APPROACH

~ A suitable laminate analysis for carbon fiber based, woven fabric composites distinctly
emerges from three structural scales due to inherent differences between constituent material
properties and lamina érchitectures. At the micromechancs scale, it is beneficial to analyze the
interactions between individual fibers, fiber bundles and the surrounding matrix. Composite
Cylinder Assemblage (CCA) theory is usua]ly embloyed and affords simple, closed-form
solutions to predict effective elastic properties at this scale By treating the constituent phases
as transversely isotropic. At the mesomechanics scale, the complex lamina geometry is either
simplified to facilitate the ease of computations or the geometry is represented by periodic
shapes and trigonometric functions. Judicious use of classical lamination t]ieory is appiicable
at the mesoscale to homogenize through-thickness properties and arrive at Cartesian planar
stiffness constants in terms of thickness cross-sections, i.e. mathematical moduli - Q;’s.
Average laminae compliances or stiffnesses are found, depending on the order of integration,
by assuming isostress and isostrain conditions during the assembly of infinitesimal thickness
slices. Prediction of macroscale laminate elastic properties involves application of classical
lamination theory an additional time to homogenize meso scé.le, lamina properties in terms of
the total composite laminate thickness. The macroscale elastic behavior of the laminate is
dependent on the ply arrangement and the values obtalned at th1s scale can equally be

compared to the apparent, experimental elastic propertles

3.1 Evaluation of Woven Tow Properties

A woven fabric lamina may be considered as a “composite within a composite” with the
bundled tows, surrounded by a matrix, forming the 1% composite material and the woven

lamina, surrounded by a matrix, forming the 2 composite material. The least complicated

approach to take in evaluating the elastic properties of the 8HS woven fabric tow, is to treat
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individual tows as unidirectional composites composed of continuous arrays of fibers and
surrounding matrix. In practice, the fiber-to-fiber “lattice” spacings and diameters are highly
irregular, so it does not make much sense to evaluate fiber volume fraction based on the

argument of maximum 2-D circle packing density (analogous to the Kepler Conjecture) with
regular tessellations of the form

2
Vhexagonal — 7 ( L )
243\ R
17

where R is half the center-to-center spacing of fibers and r is half the fiber diameter. Instead,
it is more practical to evaluate fiber volume fraction baséd onobservations and measurements
of scanning electron micrographs taken from actual laminate cross-sections. Analysesof SEM
images taken from several cross-sections lead to measured binary ratios (normalization ofthe
number of white pixels to the total image area in pixels) in the range 0£0.71/1.00 to 0.74/1.00
as shown in Figure 10 for the composites considered here. The measured binary ratios or area
fractions can be considered to be an equivalent representation of the measured tow volume

fractions if the phases are assumed to be infinitely long and continuous and if variations in

tow-to-tow cross-sections are considered negligible. Once the ranges of measured volume

fractions of fibers and constituent material properties are determined, CCA theory can be
applied successfully to calculate the equivalent elastic properties, in the principal material
directions, of the unidirectional composite laminae (warp and fill tows). Subsequently,

classical lamination theory may also be applied to evaluate lamina and laminate properties.

3.2 Composite Cylinder Assemblage
The CCA model due to Hashin and Rosen [24-26] gives closed-form, analytical expressions

for the effective elastic constants of a UD lamina where the transversely isotropic (assumed)

fiber and matrix are modeled as concentric cylinders. The longitudinal Young’s modulus E;,
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of the UD composite lamina is given by

v v, (v -ve Y

E,=E{V,+EV, + L2t 1

11 n"r 11" m Vm Vf 1 (18)
b
kf km Gy

where the sub- and superscripts f and m denote material properties of the constituent fiber
and matrix phases, respectively. The subscript 1 refers to the longitudinal fiber direction and
the subscripts 2 and 3 refer to the directions transverse to the fiber. The matrix volume

fractionis V,=(1 —Vj) . The transverse Young’s modulus E,, is a bounded solution and the

bounds are given by
EV 4k, G,
K G'UB{1+ L Vu) )
11
£ - 4k;G'®
k' +GLB (1 + 4k, V12J (20)
11

where the superscripts UB and LB are the upper and lower bounds of the solution to the
transverse Young’s modulus. Both the upper bounded and lower bounded solutions for E,,
are dependent on the transverse bulk modulus k*, of the UD lamina and a bounded solution

for the transverse shear modulus G*, as well.

o k-7, N, + G5 )k 7, (6, +GE)

= 21
‘ (-7, N, +Gn)+ v, (k, +GB) @D

Although more accurate solutions for G*, have been developed based on equivalent,
homogeneous composite properties (single fiber surrounded by an equivalent composite

instead of constituent matrix material), the concise forms are given as
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( \
. V. Al+ B,
G =Gpn|1+ AT (22)
Y+ B 3Vab
— -y | 14 ol
L y-1 Vie+1 )
. v
G =Gn + A .
L, Vulk, +262) @)

G4 -Gy 264k, +Gx)

The bounds given by Egs. 22 and 23 are acceptable solutions when the fiber transverse shear
modulus is larger than the transverse shear modulus of the matrix and the fiber bulk modulus
is larger than the matrix bulk modulus, that is when G’ > G™; and k> k. If the opposite

conditions exist, then the upper and lower bounds for the transverse shear modulus of the UD
lamina are given by

) 14
G =GJ + A
1 v, (k, +26m 4)
’a m + m( . m‘ '
Gy -Gy 2Gy; (km + GzD
/ \
) v, (+p,
G =Gnl1+ 10+ ) (25)

2 p2
(},+'BMJ_VJ’ 1+3Zmﬂm
L y-1 Via+1)]

Ineither case, the following relationships hold for the fiber and matrix transverse bulk moduli
with the fiber transverse bulk modulus defined as

o (4w 1Y 2%
f- EZL - E/ _Gf (
22 11 23
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and the matrix transverse bulk modulus defined as

l m2 -1
v =( 44 1’”) @
E22 Ell G?.?c

- while relationships between the fiber and matrix transverse bulk and shear moduli are given

as the following:
k k
S m
= s m=—— 2
& k, +2Gf, p k, +2Gn @8)
- f
a=Bn s y=n @9)
1+7,Bf o Gy ‘ :

The longitudinal shear modulus G,, and Poisson’s ratio v,, of the UD composite lamina are

V.Gl + Gh L+ Vf)J G0)

G =GI{G1'§(1+ v, )+V.(GE)

1 1)
v,V \vh -vh] ——-—
fm(12 12{k kf}

m

Y & m
Vis -vqu + vV, +

(31

Ve Vs 1
mp Ly =

If the transverse Poisson’s ratio v,; of the UD composite is desired, then a bounded solution

can be given in terms of the upper or lower derivations of the transverse shear modulus as

71 (32)
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3.3 Strain Energy Equivalence

Accurate application of numerical methods to validate the elastic properties determined from
the CCA model involves the analysis of a representative volume element (RVE). The RVE
is modeled based on a periodic fiber packing sequence, and although the ideal square or
hexagonal packing model given by Eq. 17 is chosen for simplicity, the numerical fiber volume
fraction is made equivalent, by iteration, to the actual fiber volume fraction determined from
SEM cross-sections. From a numerical standpoint, it is important that the RVE accurately
represents periodicity and the accompanying periodic boundary conditions. Without such
accuracy, the RVE elastic constants predicted will not be representative of the composite. If
the proper choices are made for a periodic geometry and boundary conditions, the stress and
strain states should also be periodic even though they are not necessarily uniform as in
homogenous materials. By assuming strain energy equivalence, it can be shown (see Sun and
Vaidya [27]) that subjecting the periodic RVE to appropriate surface tractions or

displacements that would produce uniform stresses in a homo genous medium is valid here.

Macro-stress and strain, based on classical lamination theory pertaining to average
moduli of homogenous media, are derived via an average of the stress and strain tensor over

the RVE volume as follows where the average stress is given as
ave 1
oy = I—/— Iay (x, ¥, z)dV (33)
v

and the average strain is given as

ave

1
5" == J.a,.j (x,y,2)av (34)
14

According to strain energy equivalence criteria, the strain energy U’ is stored in the

heterogeneous RVE with a potential equivalent to external work W? done by a force acting
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on the volume. It can be assumed that the difference in this strain energy and that of the
homogeneous volume (U) yields the following relationship:

0L (- e

where u, represent boundary displacements. If the volume is discretized in such a manner that
produces a large number of elements and nodes, the use of Eq. 35 becomes somewhat
unwieldy to manage. In the place ofthe volume integral, the divergence theorem of Gauss can

be applied to convert the volume integral into a surface integral by

in general
J.”‘divF dv = .fF en dA
T s 4

J’J‘.‘(aai 6aFy az)dxd dz_.SI(F;cosa+F2cosﬂ+F3cosy)dA

(36)

where T is a closed and bounded region in space whose boundary is a piecewise smooth

surface S. IfF(x, y, z) is a vector function that is continuous and has continuous first partials

in the T domain, then n is the outwardly normal unit vector of S. Therefore, Eq. 35 becomes

U-U=Y j'a,-,- (4, ~u Jn,ds €p)
S

Similarly, Gaussian divergence theorem may also be applied to the volume integral given in
Eq. 34 to yield a relationship for tensorial strain in terms of a surface integral as given by the

following:

ay=-21—V§“ n,+u n)dS (38)
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where V is the RVE volume, S is the boundary RVE surface, v, is the i* component of
displacement and n; is the j component of the outwardly normal unit vector. From Eq. 38,
displacements can be prescribed on the boundary surface and tractions can be determined
from resulting surface reactions to prescribed displacements. In all cases, it is assumed that

the Cartesian and principal material coordinate systems are coincident.

Uniaxial Tensile Case (E,) - For the case of axial loading, a % symmetry RVE can be
modeled to determine the longitudinal tensile elastic modulus. The following boundary
conditions are imposed (with node matching) on the finite element model shown in Figure 11:
5,0,y,2)=0
3,( 0.5a, y, z) = constant

Clearly, Eq. 38 reduces to the more apparent definition of strain as given by

£, = I—/-S u.nds = 054 (39)

The average stress in the RVE can be determined by equating the external work to the strain
energy stored within the RVE and solving [27]:

1 1 e ,ave
Edex =§a;': EqV (40)
therefore
» |
ave = X 41
7= =10.55)0.5¢) “h

Finally, the longitudinal tensile modulus and Poisson’s ratio are obtained as follows, assuming

a prescribed displacement (3,) of unity:
P o
E_ =% and v_=--2 (42)
“(0.5¢ ¥ (5 )
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This is based on the premise that a = b and P, is the resultant surface reaction derived from
the prescribed boundary conditions.

Transverse Tensile Cases (E,, = E_)) - Similarly, the transverse tensile elastic moduli E,, and

E,, can be calculated, based on the above derivations, and by assuming that the following
boundary conditions apply to the % symmetry finite element model shown in Figure 11:
3,(x,0,2)=0
,(x, 0.5b, z) = constant

E, = 5 and v, = o= | | |
W-W » = 5, 43)

8,(x,y,0)=0
3,(%, ¥, 0.5¢c) = constant

o
p= i and vy = (44)
0.5b) s

z

E

Longitudinal Shear Case (G,,) - The case of longitudinal shear loading requires more specific
boundary conditions imposed on a full representation of the square array, i.e. no planes of
symmetry are assumed. Since this type of loading is independent of the long axis (axis parallel
to the fiber), boundary conditions must be such that both the Y-Z planes at x=0 and x=1.0a
displace identically to eéch other. Ideally, this also implies that nodes on opposing faces share
the same planar locations. To satisfy this requirement, the following boundary conditions are
applied to the finite element model in Figﬁre 12:
8,(x,0,2) = 8,(x, 0,2) = 8,(x, 0,2) =0
d,(x, 1.0b, z) = constant
d,(x,1.0b,2) =0

To assure that both Y-Z planar surfaces at x = 0 and x = 1.0a displace by an identical amount
at every point on each surface, the additional prescribed boundary conditions are:

25

23




00, y,2) = 8,(1.0a,y, z)
6,0, y, 2) = 8,(1.0a, y, 2)
3,0,y,2z)=8,1.0a,y, 2)

As in the previous cases of deriving the axial and transverse tensile elastic constants, a similar-

solution for the longitudinal shear modulus is adopted from Sun and Vaidya and shown as

well. Again, application of Gaussian divergence theorem to the RVE vyields the following

relationship for average, equivalent shear strain Yrys

we 2 1
7o = gde=—I}-j(uxny +uynx)dS (45)
v $

Accordingly, by equating the external work to the strain energy stored within the RVE [27]
and reducing Eq. 45 according to prescribed boundary conditions:

ave Oxy 1 1 e, ave

7o “osoyose) M 2Fe0n=50575T
J ' (46)
P,

72 = 2(0.5a)0.5¢)

therefore, the longitudinal shear modulus is given by
=%
%o = 0.5 @)

based on the premise that a = b and P,, is the resultant surface reaction derived from the
prescribed boundary conditions. This analysis can also be employed for the case of transverse
shear (G,,) similarly. An alternate set of boundary conditions are imposed to deform the RVE
(Figure 12) in a manner such that it forms an unrestricted parallelepiped about the fiber axis:
0%, y, 0) =38,(x,y, 1.0c) = 8,(x, 0, z) = §,(x, 1.0b, ) = 0
- [6,(x, y, 0)] = 8,(x, ¥, 1.0c) = constant -
- [8,(x, 0, 2)] = 8,(x, 1.0b, z) = constant
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4 MESOMECHANICS APPROACH

At the mesoscale, classical lamination theory is considered applicable for evaluating the

equivalent elastic properties of the woven fabric lamina. Several mathematical models [1-9]

have previously been proposed to account for the woven fabric geometry in evaluating elastic

" properties, particularly for the plain, open and closed weave architectures. For satin weaves

specifically, Ishikawa and Chou proposed the bridging model which was necessarily a
combination of their series and parallel models. The 2-D bridging model treats the non-
interlacing tows surrounding the interlaced region as an assemblage of cross-ply laminates
that act as load bridges. Tow undulation is considered only in the loading direction while the
cross-sectional geometry and orthogonal undulation are not considered. In this work, a
simplified 2-D model is proposed for the 8HS woven architecture that accounts for actual

undulation of mutually orthogonal tows and actual tow cross-sections, including random

variation.

4.1 Evaluation of Woven Lamina Prop'erties

The basic premise of the simplified 2-D model considers the 8HS, woven fabric lamina as a

laminate having two layers and a V; equivalent to that of the woven fabric tows. From the
digitized reproduction of the tow centerlines and tow cross-sections by cubic spline
interpolation, m®-order polynomials are fitted according to the method of least-squares
approximation. Asan example, consider a straight line z = a + bx or z = ¢ + dy (consistent
with the previously estab]jshedlcoordinate system) fitted through the given points (x;, z,), ...
s (Xp 2) OT (V45 Zy), - » (Vs Z,) SO that the sum of the squares of the distances of those points
from the straight line is a minimum, where the distance is measured from the z-direction. The
point ordinate a + bx; or ¢ + dy; corresponds to an abscissa x; or y;. Therefore, the distance
from (x;, z) and (y;, z)) is |z; - a - bx}| and |z - ¢ - dy|, respectively. In general, a polynomial

of degree m is given by

p(x)=b0'+b1x+"'+bmxm ; msn-l (48)
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and the sum of the squares of the distances q takes the form given by
(49)

where q depends on '(m + 1) parameters by, ..., b, and there are (m +1) conditions or
minimums which give a system of (m+ 1) normal equations. Upon extending the example for

the case of a 2 order, least-squares polynomial approximation with a quadratic polynomial
of the following form

p(x)=b, +b,x + b,x* (50)
where the normal equations (summation from 1 to n implied) are given by
byn +blej-‘|-b22xj:Z =sz
bOij +b12x12.+b22xj3 =ijzj (51)
bOijz- +bIZx3 +b22xj4 =Zx12.zj

This system is symmetric and solution to the unknowns by, b, and b, is accomplished by one
of the more commonly used numerical methods such as Gauss elimination, Gauss-Seidel
iteration or LU-factorization. A modified method of Gauss elimination with LU-factorization
is employed to solve the system of normal equations for the unknowns in m®order
polynomial fits of the upper and lower tow cross-sectional perimeters and tow centerline as
illustrated by Figures 13 and 14. The success criterion used for determining the appropriate

polynomial order of fit is a coefficient of determination R? 0.95.
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4.2 Compliance Transformation

The equivalent elastic properties of the warp and fill laminae can be determined by evaluating
the average, reduced compliance for the local off-axis angle of undulation. The local off-axis

angle of undulation for the warp and fill tows is given by

¢u=tan 2 [z=p(x]]
(52)

qf(y>=tan"%[z=p(y)]

where  is the local off-axis angle as represented in Figure 9 and z is given in terms of x or y
and is equivalent to the least-squares polynomial approximation for either the warp or fill tow
centerlines (defined by Eq. 48 for a m®™order polynomial). The particular off-axis angle
reduces the effective elastic constants with respect to the Cartesian (global) coordinate
directions. Solution to derivatives in (52) are the slopes of secant lines that approximate lines
tangent to any segment of the least-squares polynomials. Unlike numerical iﬁtegration which
is a smoothing process, differentiation is much less accurate since the derivative is the limit
of the difference quotient. The forward difference quotient tends to underestimate the
derivative and the backward difference quotient tends to overestimate the derivative. The
symmetric difference quotient provides the best approximation to the slope ofthe tangent line

as Ax becomes smaller as is given by (example: warp tow centerline)

= lim
2Ax

& M[p(xm)_p(x_m)] | )

From Hooke’s law, the constitutive relations of a UD lamina which relate strain to
stress in terms of the compliance matrix S; can be expressed in the generalized form with

contracted notation
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6 .
£ = Zsya, (54)
J=1

where i, j = 1, ..., 6 in reference to the material principal coordinate system x, - X, - ;. For
~ aUD lamina with fibers oriented at an angle { with respect to the Cartesian reference axis (see
Figure 15), the generalized form of the constitutive relations in terms of the transformed

reduced compliance matrix S,-j can be expressed as

In this case, the transformed reduced compliance constants Sij wherei, j=1, ..., 6 can be

written for the transversely isotropic warp or fill tows as follows (after [28]):

Su(¢)= °°S4(‘)+[ o )cosz(c)st(:) sn’e)

E, Ey
Szz(C)—]—E;
Ses (C)= cos? (4’) N sin? ({) (56a-¢)

G12 G23

_Va 0052(4) Va3 sinz(é')
Sy ({ )— E, + E,,

_ L2
Vo =—=Vpp
11

The effective elastic properties for the equivalent warp and fill laminae are determined by
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inverting the averaged local, transformed compliance. The average compliance is the mean

integral value of the local compliance given as
¢
'_ave 1
57 = j 7)
0 o

where the limit of integration ¢ is defined as the maximum off-axis angle of warp or fill tow

undulation. The maximum off-axis angle may be stated as

gy = tn? 2 o= o)
' (58)

@, = max [tm - % [z= P(Y)]]

and determined for the warp or fill tow centerline by utilizing techniques to sort the local off-

axis angles into ascending order by numerical methods such as straight insertion, qmcksort
and Shell’s method.

4.3 Application of Classical Lamination Theory

The elastic properties of the woven fabric lamina can be evaluated using classical lamination
theory (CLT). Knowing the effective elastic properties ofthe warp and fill laminae, the lamina
can typically be treated as a 3-layered laminate and evaluated at the V;of that specific lamina.
It is also proposed that the lamina can be treated as a 2-layered laminate and evaluated at a
V;equivalent to an average value for the woven warp and fill tows. Under the assumptions

of the Kirchhoff conjecture for thin plates, the constitutive relations, in condensed form, are

o lsTo ) @
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where N and M are membrane stress and moment resultants, respectively. The strain and
curvature of the laminate midplane are g, and K- The [A], [B] and [D] (extensional,
extensional-bending coupling, bending) stiffness matrices are evaluated accordingly by

4,,8,,D,] =Zn: h](l,z,zz)[éy]kdz (,j=12,6)
. b ¢ | )
| [A,,-]=Z(hk—hk_l)[@;-]k
(60a-c)
[Bg-]=g%(h§ -1 )ig,
1=y 502 -12.)a1),

where [Qj ¢ are the reduced mathematical moduli of the laminate k®-layer corresponding to
the lamina defined by a thickness (h, - h, ;). On the basis of assuming that the equivalent, 2-
layered laminate is composed of UD laminae with transformed tows (ﬁbers) inthe xand y

directions, the non-vanishing stiffness constants are given as

4 = 22_(E11+E22)h D“_Dzz_(E“+E22)h3
= Ay, =T =0/l =D, =
2D, . 3 24D,
v, E\h vi,E,h
A, = 12-22 Du:u_ |
D, 12D, (61a-f)

G,h’

Ags =Gph D, =—12

66 12 , 66 12

-E
Bll =—B22 — (Ell 22)h

8D

v

where the following relationship is applies:
D, =1-vpv,
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InEgs. 61a-f, E,, and E,, are the Young’s moduli, Gy, is the in-plane shear modulus and v,,

is the Poisson’s ratio determined from inversion of the averaged compliance given by Eq. 57.

In reference to the geometrical midplane of the 2-layered laminate, the total laminate
thickness h is determined by evaluating the average warp and fill tow thicknesses h,, and h,.
The average tow thicknesses can be determined by analysis of the least squares polynomial
approximations p(x, y) to the perimeter of the tow cross-sections. Given a maximum tow

width of a, the mean value of thickness :h-g- , in reference to the midplane, is found by

h = [p)ax = ple" Y -0)
v ©62)

2’1_0 ]P(x)dx -pl")

Assuming the polynoinials were approximations to points defining the upper and lower
perimeter about the geometric center of the respective tow (Eq. 13), then the thickness

represents the sum of mean values evaluated by Eq. 62.
4.4 Numerical Strain Energy Method

With reference to the numerical strain energy approach adopted for verification of the
micromechanics solution, a similar numerical analysis can also be employed to verify the
results obtained from the simplified 2-D mesomechanics model. The 8HS woven fabric lamina
repeat volume element is simplified to an idealized volume (IVE) having planar dimensions
as suggested by Ishikawa and Chou [23]. Under presumptions similar to those for the
treatment of thin homogeneous plates, the top and bottom lamina surfaces are left free of
tractions, i.e. a single ply analysis. Lamina elastic constants are evaluated by prescribing
linearly independent displacements suitable for the requisite state of deformation. As with the
numerical verification of woven tow properties, a direct frontal or wavefront solver is used

in the finite element analysis to compute macrostress components obtained from averaging
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forces on IVE faces in the directions of interest. As an example, the macrostress component

Gy, in the Cartesian coordinate system can be obtained by

Oy = Fprey=x=+2a,x,=y,%, =z (63)
ol e )
. t n

where Fp™ is the nodal reaction at the n® node on the face normal (at x, = v2a) and
summation occurs over all nodes on that face. It is worthwhile to note that use of Eq. 63 in
the manner presented is equivalent from a numerical perspective to the use of Eq. 33.
Evolution of the IVE from the RVE is shown in Figure 16 where the lamina thickness (h,)

given above is influenced by the exact V; determined from an iterative process.

In general, the equations for solving static and linear finite element analyses are ofone
of the following forms [29]:

[K]{u}={F}
(K]0} = {7} {7}

‘where [K] represents the total stiffness matrix, {u} is the nodal degree of freedom (DOF)
vector and {F} is decomposed into the applied load vector {F*} and the nodal reaction load
vector {F'}. The total applied load vector is the sum of the applied nodal load vector {F*} and

total of all element load vector effects {F}. Nodal DOF values on every node can be obtained

(64)

if boundary conditions are sufficient to guarantee a unique solution to Eq. 64. The nodal

reaction load, i.e. the ¥, F™ in Eq. 63 considered for all pertinent DOF’s where only the

loads at imposed DOF are output can be written as
{FrY= [k - {F}-{F) (65)
Displacement boundary conditions are imposed on the lateral faces of the IVE in a

manner that would produce uniform strains in an equivalent homogeneous medium. For

instance, a uniform strain state in the warp direction (¢, in reference to the model shown in
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Figure 17) implies that the following boundary conditions are applicable:

(8 (0, y, 2) - 3, (V8a, y, z) = const.) (3, (%, 0,2) - 8, (x, V82,2) =0)
(&, (0,y,2) - 5,(V82,y,2)=0) (3, (x,0,2) - 8, (x, V8a,2) =0)

(3,(0,y,2) -3, (V8a,y,2) =0) (3, (x,0,2) - 8, (x, V8a,2) = 0)
For the remaining planar states of deformation, the non-zero boundary conditions are

8yy (8y (X, O’ Z) = 8y (X, \/83': Z) = COIlSt.)
Ve (5. (x, 0, 2) - 8, (x, V82, Z) = const.) (3, (0,Y,2) - 3, (V8a,y, z) = const.)

5 EXPERIMENTAL

In this investigation, an experimental procedure was adopted to determine the apparent on-
axis and off-axis elastic properties of 8-harness satin, woven fabric composites using the
tensile and off-axis tensile tests (ASTM Standard D 3039-76: Standard Test Method for
Tensile Properties of Fiber-Resin Composites) and a modified, Iosipescu shear test (ASTM
Standard D 5379-93: Standard Test Method for Shear Properties of Composite Materials by
the V-Notched Beam Method). Three different cbmposite systems, based on woven graphite
fabric, reinforced polyimides were tested. Four graphite-PMRiS composite plaques were
fabricated at the NASA Lewis Résearch Center per the following specifications: -

» Fiber / Fabric: T650-35 / 3k, 8HS cloth
» Matrix: PMR-15 (fm.w. 1500)
» Laminate sequence: [0°],¢s, floating undulations
» Cure method: simulated autoclave and postcure (G. E. specifications)
» Q/A: C-SCAN showing varying attenuation only at edges
» Plaque dimensions: 305 mm x 305 mm x (4.82, 5.15, 5.50, 5.38 mm)
[12.0 in x 12.0 in x (0.19, 0.20, 0.22, 0.21 in)]
Two graphite-Avimid R composite systems with different ply orientations Were also submitted
by Pratt & Whitney. The plaques were fabricated at DuPont per the following specifications:
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» Fiber / Fabric: T650-35 / 3k, 8HS cloth

» Matrix: Avimid-R (dianhydride-diamine monomers)

» Laminate sequence: system 1 - [0°],,s, floating undulations

» Ply arrangement: system 2 - {0°/90°] 45

» Cure method: simulated autoclave and postcure

» Q/A: C-SCAN showing varying attenuation only at edges

» Plaque dimensions: 305 mm x 305 mm x 3.92 mm {12;0 inx 12.0inx 0.15 in)

5.1 Off-axis Tensile Testing

For the static tensile and off-axis tensile tests, a total of 15 specimens was prepared
predominantly from the graphite-PMR 15 composite plaques at angles of 0°, 15°, 30°, 45°
and 90°. The tests were performed at room temperature on a MTS 880 servo hydraulic
machine with pressure controlled grips and serrated wedge inserts. Under monotonic,
displacement controlled conditions, a crosshead displacement rate of 0.5 mm (0.02 in) per
minute was used. Specimen dimensions were maintained according to ASTM standard
specifications and aluminum tabs with an included 10° taper were used to prevent crushing
by the serrated inserts. For tests Where a predominant failure stress was of interest, hardened
steel pins were employed to prevent slipping within the grips. Loads, displacements and
strains were recorded digitally and strains were measured with rectangular, 3-element rosettes
(Measurements Group WK-06-060WR-350 series).

The ply-level stresses in the off-axis tensile specimens with tows oriented at an angle
B to the principal loading axis were determined using the established transformation

equations. In referring to the schematic of a loaded off-axis specimen shown in Figure 18:
2
o, =0,c05" f8
Oy =0, sin’ B (66)

T, =0, sin fcos S
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The ply-level strains in the off-axis specimens were evaluated based on strain gages having
elements oriented at 0°, 45° and 90°. In such as case, the shearing strain was interpreted
from the gages as v,, = (-8, +2¢,5~ ey). Therefore, the strains in the material coordinate

system, in terms of the gage strains and off-axis angle were determined using

£ =6,cos’ B+e&,sin’ B+ ((— £, +2645 — ey)sinﬂcps ,B)
£y =&, sin” B+&,cos? B ((—— &, +2645— 8, )sin B cos ﬂ) (67)

}’1.2 = (— &y + £, )sin 2P+ ((— Ey + 2645 — ey)cos Zﬂ)
5.2 Biaxial Shear Testing

For the static shear dominated, biaxial tests, a total 0f20 specimens was prepared from all of
the composite plaques. The shear test fixture used was specially designed to permit the testing
of Iosipescu shear specimens at a variety of angles o (max + 45°) to the axis of applied load
as illustrated by the schematic in Figure 19. It bas been used on numerous occasions for the
purposes of investigating the failure behavior of composite materials under shear dominated,
biaxial loading conditions [15-20]. The fixture accommodates different loading block designs
including the ASTM standard geometry. In this investigation, the original loading blocks were
used which allow for Iosipescu specimen dimensions of 80 mm x 20 mm (3.15 in x 0.79 in).

All shear tests were performed at room temperature on both the MTS 880 and Instron 1230-

20 machines for the purposes of comparison. Under monotonic loading conditions, these tests

maintaihed the same control and rate as in the tensile tests. Loads, displacements and gage
strains (2-gage, back-to-back) were also recorded digitally and strains were measured using

the same WK series rosettes.

- The apparent shear stress in the modified Iosipescu specimens was determined by the

following relationship in terms of the notch root axis and width:

P, P cos(a)

2= 0 W (68)
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where P is the externally applied load, o is the orientation of the notch root axis to the loading
axis, w is the distance between notches and t is the “as received” plaque thickness. For
calculating the apparent shear modulus, o was taken to be zero. The strains were evaluated
by rotating the rosette so the elements were oriented at +45°, 0° and -45° with 0° being
parallel to the Tosipescu specimen notch root axis. The primary reason this was done was to
monitor the amount of transverse compression produced by different loading block

configurations. Given this, the shear strain was calculated from average readings of the pair

of rosettes mounted on each side using the relationship
Y12 = (5—45 ~ £145) (69)
6 RESULTS AND DISCUSSION

A simplified 2-D model has been presented for the on-axis and off-axis elastic analyses of 8HS
woven fabric composites. At the microscale, the model employs CCA theory to predict woven
tow elastic properties over a range of constituent carbon or graphite fiber and polyimide
matrix properties. The mutually orthogonal warp and fill tows are treated as UD composites
and the mesoscale model considers the real, random geometry of tow cross-sections and
undulations based on digitized scanning electron images. Model validity is scrutinized with
finite element analysis and a series of standard experimental tests to determine apparent elastic
properties. An extensive finite element analysis is performed at both scales to verify tow
elastic properties predicted by CCA and composite elastic properties predicted by the
simplified model. An assumption is made that the woven lamina may be treated as a 2-layered
laminate if evaluated at the equivalent tow V. This assumption is studied by comparing model
results based on the tow and laminate V,with 3-D FEA results that include the matrix and V
representative of a woven lamina having matrix rich regions. Equivalent numerical elastic
properties are determined by dividing the applied strains from prescribed displacements into
the average stresses from nodal reactions. These results are verified by equating the external

work done to internal strain energy.
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The ranges of constituent properties for the graphite or carbon fibers and polyimide
. matrices considered in this investigation are presented in Table 1. With reference to this table,
all subsequent results presented are in terms of a composite system. As an example, system
F-c® refers to a composite possessing the upper limit of reported values for T650-35 (3k)
fiber pfoperties combined with the upper values for PMR-15 matrix properties. The F-b® and
F-c systems are used here extensively for comparison as they are more representative of an
average of constituent properties for the composite materials tested in the experimental
program. It is seen from Table 1 that the reported range for fiber-based properties varies
significantly, particularly in the transverse directions. Graphite and carbon-based fibers exhibit
highly anisotropic behavior so this is not entirely unexpected, particularly considering the

difficulty in obtaining or estimating these values.

On the basis of CCA theory, Table 2 presents the results for several composite
systems having various combinations of constituent properties. Upper and lower bounds for
the transverse tensile and shear elastic properties are shown in accordance with the bounded
CCA prediction. The {H} represents an upper bound where the transverse shear modulus of
the fiber is muéh greater than the matrix shear modulus, while the lower bound {L} represents
the opposite. As expected, the greatest difference betWeen the upper and lower bounds occurs
with the greatest range between fiber transverse and matrix shear moduli exhibited by system
B-b. The F-c™ system appears to maintain the best balance of longitudinal and transverse
properties. Clearly, Table 2 also shows that intralaminar and transverse shear behaviors are
influenced more by the elastic properties of the matrix than of the fibers. CCA theory provides
a simple closed-form expression for the equivalent composite shear modulus in terms of the
matrix shear modulus and rule-of-mixtures ratio. Therefore, a nominal increase of 12% in
fiber shear properties results in a 5% increase of equivalent shear properties while the same

increase in matrix shear properties adds an additional 5 or 6%.
Linear elastic finite element results for the micromechanics analysis of woven tow

properties from the example composite system F-b™, as a function of V,, are provided in

Figures 20-24. For the periodic geometry ofa ¥4 symmetry, square array RVE, fiber diameter
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was held constant at 7.37 um (0.29 mils) and requisite volume fractions of surrounding matrix
were achieved by numerical iteration. The apparent elastic moduli were determined using two
approaches: 1) averaged stress — applied strain (dividing the equivalent force from summed
nodal reactions by the normal area), and 2) strain energy principles (equating the external
work to internal strain energy). Comparisons of the present results were made with the
analytical micromechanics solutions of Hashin and Rosen (CCA) [24 -26] Halpin-Tsai [32]
and Chamis [33]. For the longitudinal tensile modulus E,;, agreement between the numerical
and closed-form solutions is excellent as shown in Figure 20. Although the practical range of
V; approximately varies from 0.3 to a theoretical maximum of 0.8, the entire range from
absolute matrix to absolute fiber is shown for the purpose of comparison. It is evident from
Figure 21 that the numerical solution for the transverse tensile modulus E,, tends to converge
on the lower CCA bound near a V;0£0.45 and the upper CCA bound near 0.65. Beyond this,
the current model predicts slightly larger values for E,, compared with the closed-form
solutions. Within the useful range, the numerical solution for the intralaminar shear modulus
Gy, predicts values near the model presented by Chamis for highly anisotropic materials such
as carbon-based fibers. As seen from Figure 22, the FE model suggests an average
approximation that falls within the bounds provided by the analytical micromechanics
solutions as the V, approaches 0.65. At a V;between 0.7 and 0.8, the FE model suggests an
upper bound approximation to the shear modulus.

The results for the longitudinal Poisson’s ratio vy, and transverse Poisson’s ratio v,,
are presented in Figures 23 and 24. The analytical approaches essentially predict a linear
reduction in v, with increésing V§, the exception being a minor inflection in the CCA solution
near 0.4. The FE model transitions from an underestimate to an overestimate in the range of
0.4 t0 0.5. The reasons for such a trend are twofold: first of all, a somewhat linear declination
in the longitudinal Poisson’s ratio with increasing V. is expected due to a reduction in the
amount oftransverse straining possible from contraction. This depends not only on the degree
of anisotropy of the fiber, but also on the fiber volume fraction, constituent Poisson’s ratios
and constituent plain strain bulk moduli. Here, the difference in magnitudes of relative

transverse straining occurring in the fiber and matrix for a given applied longitudinal strain
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govern the slbpe of the line over the range of V; considered. Secondly, the transition in v,,

between 0.4 and 0.6 as seen in Figure 23 seems to be highly dependent on the FE

discretization procedure. The % symmetry RVE, constructed for the longitudinal and
transverse tensile load cases, used 159 10-node, isoparametric tetrahedral elements (354
nodes) while the full RVE, constructed for the longitudinal apd transverse shear loading cases,
used 1049 10-node, isoparametric tetrahedral elements (1768 nodes). Further mesh
refinement, particularly in the thickness direction, tended to result in both Poisson’s ratios
converging on the solﬁtion predicted by the theories. For v,, the trendihg line became more
linear and any inflection was less evident. Changes in the solution for v,; shown in Figure 24
subsequent to further through-thickness mesh refinement were similar. Under the auspices for
calculating the transverse Poisson’s ratio according to the relatioﬁship vy =(E,;/2Gy3)-1, the
trend in behavior with increasing V; appears to be a consequence of the larger of smaller
difference in increasing transverse tensile stiffness of the equivalent composite relative to
transverse shear about the fiber axis. Given this, the magnitude of change in stiffness behavior

in transverse tension and shear seems equivalent within the ranges of 0 to 0.4 V;and 0.6 to
0.8 Vg

Based on the same requisite volume fractions as considered in the tow analysis, Table
3 compares the non-zero extension, extending-bending coupling and bending compliance
solutions for 8HS woven laminae having the same T650-35 fiber properties, but different
polyimide matrix properties. These values are compared with a baseline solution for a lamina
having no undulations, essentially a UD cross-ply. If differences in non-zero terms are
compared for each lamina, it is clearly suggested that variation in properties of the matrix
influence the diagonal {66} and off-diagonal {12} terms to a greater extent. Upon closer
scrutiny, it is found that these terms diminish by some 20-30% when matrix elastic properties
are augmented by approximately 40%, implying enhanced stiffnesses. The present model also
suggests an inverse behavior when comparisons are made between both lamina architectures.
That is, a significant increase occurs in diagonal extension and bending {11} terms whenlocal
off-axis undulation angles ranging from 10-12.3° (using quick-sort and Shell’s methods) are

considered, as observed for the 8HS architectures in this investigation. Contrarily, the
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extension-bending coupling terms reduce to 18% of their baseline value while very little finite
change is evident for the diagonal {66} terms. Variations in extension and extension-bending
coupling compliances with local angle of undulation are shown in Figures 25 and 26. The
ranges indicated are for a woven lamina with a system of type F-b™ having a measured tow
Veof 0.72. Two important indices are evident from these range charts: 1) constituent elastic
properties, and 2) angle of undulation. It appears that the Apresent model would predict
maximum extension {A,,,,,} terms and minimum extension-bending coupling {Bj;,2} terms
near an undulation ahgle of 16°.This seems reasonable for the case of a plain weave

architecture (n; = 2) depending on the size of the gap between adjacent tows.

The macroscale laminate solutions for several of the composite systems are provided
in Table 4 on the basis of results from the mesoscale predictions carried over from CCA (see
Table 2). The composite laminate elastic properties are based on a 16-layer laminate having
a total thickness of 5.00 mm (0.20 in), representative of the composite plaques tested in
tension, off-axis tension and shear. In comparing the macros;:ale results with the range of
apparent elastic properties determined experimentally and given.in Table 5, it can be seen that
- the model tends towards underestimating the mean of E, and E,, by 7.5% and v,, by'14%,
while overestimating the mean of G,, by 21% for the F-c® system. Additionally, the gap
would increase By 15% for E,,; and E,, of the F-b® system, but G,, would be underestimated
by 7%. This suggests that either the actual matrix properties lie in between the b and ¢
constituent system properties or the simplified model predicts average diagonal [A;]" terms
greater than what is to be expected. However, considering the range in measured apparent

composite elastic properties, the model provides reasonable, bounded approximations.

Structure-performance maps for evaluating the composite off-axis elastic behavior,
in terms of constituent system properties, are shown in Figures 27-29. In total, the off-axis
performance of six systems was determined, five in the type A, B, C, F systems and the
composites from the experimental program. Relationships betweenthe longitudmthransverse
tensile moduli, intralaminar shear modulus and longitudinal Poisson’s ratio were established

over off-axis angles (B) ranging from 0° to 45° according to the transformation expressions
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where the engineering constants refer to Cartesian x-y axes n_dt aligned with the principal
material coordinate x;-X, system. For the range of angles considered, agreement between the
various systems and the experiments seems to be quite agreeable Presumably, the remaining
angles in the 2™ half of the quadrant should result in 1dent1ca1 curves since reinforcement is
mutually orthogonal. In this work, it was 1mt1a]ly assumed that this was the case and
subsequently verified through experimentation. In instances where curves would not match
would tend to indicate the extent of unbalanced properties, i.e. more orthotropic than quasi-
isotropic (0/90° vs. warp-aligned). The usefulness of the structure-performance maps lies in
the ability to tailor the architecture and constituent properties to suit a desired off-axis elastic
behavior with some degree of certainty. From these mapé, knowledge of the complete range
of in-plane, elastic response is only a matter of measuring a particular elastic constant for a

given system once relationships are firmly established.

The relevant metrics presented in Table 6 for the 8HS woven composite architectures
considered were determined by image analysis of SEM micrographs and C-SCAN data. This
information was passed into the simplified, mesoscale model as well as the woven tow and
lamina FE models. From this table, an average fiber diameter of 7.37 pm (0.29 mils) was used

in the micromechanics FE models as previously described. These solutions to the woven tow
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elastic properties were passed into the mesomechanics IVE model having a major tow width
of 1393.60 pm (54.87 mils). The resulting tow aspect ratio of 8.3:1 and corresponding
volume fraction of matrix were correctly established by numerical iteration. Analytical and
numerical elastic analyses of the F-b® and F-c® composite systems evaluated at the
equivalent tow and laminate V,were compared to the experimentally obtained properties. The
results from these comparisons are presented in Table 7. The composite elastic properties
obtained from the present analytical approach are in agreement with the composite elastic
properties obtained ﬁ'om the finite element analyses for both systems and fiber volume
fractions under consideration. Additionally, when compared with the apparent elastic
properties presented in Table 5, the results in Table 7 tend to reiterate the notion that the
actual range of constituent properties for the composite materials tested lie somewhere in
between those assumed for F-b® and F-c®, It is also suggested that assuming the tow V,in
the simplified, 2-layer lamina model serves as a much better lower bound approximation to
experimentally determined elastic properties than assuming the laminate V,when considering
the F-b™ system. Mostly, the predicted and experimental elastic propérties tend to converge

on the F-c® system with the exception of the intralaminar shear modulus, which is slightly
overestimated.

7 CONCLUSIONS

1. A simplified micro-to-mesoscale analytical model has been presented for evaluating the
elastic behavior of 8HS woven fabric composites. The model assumes that random
variation in geometries of the tow cross-sections and undulations can be adequately
described by cubic splines and fitted m*-order polynomials. The model also assumes that
warp/fill tows can be considered UD composite materials and the 8HS woven lamina

considered as a 2-layered laminate. Results for n-layered composite laminate properties

show good agreement with experimentally obtained apparent elastic properties for the

range of constituent properties studied. In comparison, the model suggests that the

composite plaque constituent properties lie between those given for the F-b® and F-c®

systems.
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2. Evaluation of lamina compliances using the SMM model suggests a range of extension
and extension-bending coupling constants for the composites considered. According to
the model results, the limiting cases are shown to exist at local, off-axis undulation angles
of 0° and 16° approximately. It seems that these angles are practical lower and upper

bounds for UD and plain weave composite materials, respectively.

3. A 3-D finite element model was also presented to verify the predictions from the
mechanics model. The idealized volume element simplified the 8HS representative volume
element to facilitate appropriate use of prescribed displacement boundary conditions. The
model used the measured tow aspect ratio and volume fraction arrived at through
numerical iteration. Elastic properties were calculated from force equivalence and strain
energy methods. The results compare favorably with both the analytical model and the
experiments. It is suggested that the tow fiber volume fraction is more appropriate when
the 8HS woven fabric lamina is evaluated in the manner presented and compared with

apparent elastic properties.

4. Off-axis composite elastic behavior was evaluated throuéh the use of the familiar
equations of transformation. Structure-performance maps were introduced for several of
the composite systems considered to show relationships between off-axis behavior and
constituent properties. Comparison between the predicted and experimental off-axis
properties was favorable, but more importantly, the maps appear to serve as a possible

guide for constituent composite material selection.
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Table 1

[ \
System Ref  Fibers E;GPa E,,GPa G,GPa G;3GPa v, vy,
Msi)  (Msi)  (Msi) (Msi)
A 30 C3000 234.5 13.8 114 4.8 20 .25
(34.0) (2.0 1.7 0.7)
B 31 M7 276.0 56.0 28.0 16.7 25 -
, (40.0) 8.1 “4.1) (24
C 27 AS4 235.0 14.0 28.0 -—-- 20 25
34.1) (2.0) “4.1)
D 6 T-300 230.0 40.0 24.0 14.3 26 -
(339 (5.8) 3.5) 2.1)
E 11 AS4 221.0 13.8 13.8 5.5 20 25
(32.1) 2.0 2.0 (0.8)
F T T650-35 2434® 20
(3k)* 258.6®  40.0 25.0 14.0 26 .25

(375 (5.8 (3.6) (2.0)

System Ref Matrix® E, GPa G,; GPa
(Msi) (Msi)
a 30  PMR-15 33 1.2
(0.48) 0.17)
b T 3.24 1.2
(0.46) 0.17)
c 11 400 1.5
T 45® 1.7
: (0.65) (0.25)
d 1t Avimid-R 3.6 14
(0.5) (0.2)
*Constituent property maxima.
*Tow density.
*Isotropic.
'NASA LeRC and Amoco Corp.

"ASM Engineered Materials Handbook, Vol. 1: Composites.
MDuPont-AMS.
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Table 5

Apparent Elastic Properties

Experimental Test
¥perimentat Tes E,GPa  E,GPa G,GPa v,
(Msi) (Msi) (Msi)
On-Axis / Off-Axis Tension 769+62 769+62 6.0+0.5 .08+.03
(1L1£.9) (@111£.9) (9x.07)
Biaxial Josipescu Shear 6.1+1.6
(9+.2)
Table 6
Geometric Scale
Metric Fiber pm Tow pm Lamina pm Plaque mm
(mils) (mils) (mils) (in)
Diameter 7.37 —--- —— -
(0.29)
Major Width 1393.60 4180.80 304.80
(54.87) (164.60) (12..00)
Major ——- 167.70 301.25-392.00 3.92-5.50
Thickness (6.60) (11.86-15.43)  (0.15-0.22)
V, i 0.71-0.74 0.68-0.72 0.58-0.62




Table’7 -

V; System Model E;GPa E,GPa G,,GPa Vi2
| (Msi) (Msi) (Misi)
0.72 F-b® SMM 62.70 62.70 5.70 0.06
(9.09) (9.09) (0.83)
F-b® - FE 63.90 63.90 - 5.00 0.13
9.27) 9.27) (0.73)
F-c® SMM - 71.00 71.00 7.40 0.07
(10.30) (10.30) (1.07)
F-c® FE 73.60 73.60 6.90 0.14
(10.67) (10.67) (1.00)
0.62 F-b® SMM 50.60 . 50.60 4.30 0.06
: (7.34) - (7.34) (0.62)
F-b® FE 54.70 54.70 3.70 0.13
: (7.93) (7.93) (0.54)
F-c® SMM 58.50 58.50 5.70 0.06
(8.48) (8.48) (0.83)
F-c® FE 63.50 63.50 5.10 0.14 -
: (9.21) (9.21) (0.74)

Note:

SMM refers to the present analytical simplified mechanics model.

FE refers to the equivalent force and strain energy finite element models.
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